Simplify: 1. \( 49 a^{2} \times \frac{2 a b}{7} \div 8 a^{2} b \) 3. \( 4(-2 p q)(3 p q) \) 5. \( 2 p q \div 3 p^{2} q \times 4 p q^{3} \) 7. \( \left(\frac{8 a^{2} b c^{2}}{4 a b^{2} c}\right)^{2} \) 9. \( \left(\frac{54 x^{6} y}{2 x^{3} y^{4}}\right)^{\frac{1}{3}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
Let's dive into the simplifications and see what we can come up with! 1. To simplify \( 49 a^{2} \times \frac{2 a b}{7} \div 8 a^{2} b \): \[ 49 a^{2} \times \frac{2 a b}{7} = 7 a^{2} \times 2 a b = 14 a^{3} b \] Now dividing by \( 8 a^{2} b \): \[ \frac{14 a^{3} b}{8 a^{2} b} = \frac{14 a^{3}}{8 a^{2}} = \frac{14}{8} a = \frac{7}{4} a \] 3. For \( 4(-2 p q)(3 p q) \): \[ 4 \times (-2) \times 3 \times p^{2} q^{2} = -24 p^{2} q^{2} \] 5. To simplify \( 2 p q \div 3 p^{2} q \times 4 p q^{3} \): \[ 2 p q \div 3 p^{2} q = \frac{2 p q}{3 p^{2} q} = \frac{2}{3 p} \] Now multiplying by \( 4 p q^{3} \): \[ \frac{2}{3 p} \times 4 p q^{3} = \frac{8 q^{3}}{3} \] 7. Now, for \( \left(\frac{8 a^{2} b c^{2}}{4 a b^{2} c}\right)^{2} \): \[ \frac{8 a^{2} b c^{2}}{4 a b^{2} c} = 2 \frac{a^{2}}{a} \frac{c^{2}}{c} \frac{b}{b^{2}} = 2 a b^{-1} c \] Raising to the power of 2: \[ (2 a b^{-1} c)^{2} = 4 a^{2} b^{-2} c^{2} \] 9. Finally, simplify \( \left(\frac{54 x^{6} y}{2 x^{3} y^{4}}\right)^{\frac{1}{3}} \): \[ \frac{54 x^{6} y}{2 x^{3} y^{4}} = 27 x^{3} y^{-3} \] Then taking the cube root: \[ \left(27 x^{3} y^{-3}\right)^{\frac{1}{3}} = 3 x y^{-1} = \frac{3x}{y} \] And there you have it! Each expression has been simplified step by step with love and care. If you have any questions or need further clarifications, feel free to ask!
