Pregunta
upstudy study bank question image url

(0) \( \frac{\cos ^{2}\left(180^{\circ}-\theta\right)-\cos ^{2} \cdot \alpha-\sin ^{2}\left(\alpha-180^{\circ}\right)}{\cos \left(360^{\circ}-2 \theta\right)-1} \)

Ask by Schultz Gibson. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified expression is \( \frac{1}{2} \).

Solución

Simplify the expression by following steps: - step0: Solution: \(\sin\left(\left(alpha-180\right)^{2}\right)\) - step1: Multiply the terms: \(\sin\left(\left(a^{2}lph-180\right)^{2}\right)\) - step2: Expand the expression: \(\sin\left(a^{4}l^{2}p^{2}h^{2}-360a^{2}lph+32400\right)\) Calculate or simplify the expression \( \cos(alpha)^2 \). Simplify the expression by following steps: - step0: Solution: \(\cos\left(\left(alpha\right)^{2}\right)\) - step1: Multiply the terms: \(\cos\left(\left(a^{2}lph\right)^{2}\right)\) - step2: Calculate: \(\cos\left(a^{4}l^{2}p^{2}h^{2}\right)\) Calculate or simplify the expression \( \cos(360 - 2 * \theta) \). Simplify the expression by following steps: - step0: Solution: \(\cos\left(360-2\theta \right)\) Calculate or simplify the expression \( \cos(180 - \theta)^2 \). Simplify the expression by following steps: - step0: Solution: \(\cos\left(\left(180-\theta \right)^{2}\right)\) - step1: Expand the expression: \(\cos\left(32400-360\theta +\theta ^{2}\right)\) Calculate or simplify the expression \( \cos(2 * \theta - 360) - 1 \). Simplify the expression by following steps: - step0: Solution: \(\cos\left(2\theta -360\right)-1\) Let's simplify the expression step by step. The original expression is: \[ \frac{\cos ^{2}\left(180^{\circ}-\theta\right)-\cos ^{2} \cdot \alpha-\sin ^{2}\left(\alpha-180^{\circ}\right)}{\cos \left(360^{\circ}-2 \theta\right)-1} \] ### Step 1: Simplify the Numerator 1. **Calculate \( \cos(180^\circ - \theta)^2 \)**: \[ \cos(180^\circ - \theta) = -\cos(\theta) \implies \cos^2(180^\circ - \theta) = \cos^2(\theta) \] 2. **The term \( \cos^2(\alpha) \)** remains as is. 3. **Calculate \( \sin(\alpha - 180^\circ)^2 \)**: \[ \sin(\alpha - 180^\circ) = -\sin(\alpha) \implies \sin^2(\alpha - 180^\circ) = \sin^2(\alpha) \] Now, substituting these results into the numerator: \[ \cos^2(\theta) - \cos^2(\alpha) - \sin^2(\alpha) \] ### Step 2: Combine the Terms in the Numerator Using the identity \( \sin^2(\alpha) + \cos^2(\alpha) = 1 \): \[ \cos^2(\theta) - (\cos^2(\alpha) + \sin^2(\alpha)) = \cos^2(\theta) - 1 \] ### Step 3: Simplify the Denominator 1. **Calculate \( \cos(360^\circ - 2\theta) \)**: \[ \cos(360^\circ - 2\theta) = \cos(2\theta) \] Thus, the denominator becomes: \[ \cos(2\theta) - 1 \] ### Step 4: Final Expression Now, substituting the simplified numerator and denominator back into the expression: \[ \frac{\cos^2(\theta) - 1}{\cos(2\theta) - 1} \] ### Step 5: Further Simplification Using the identity \( \cos^2(\theta) - 1 = -\sin^2(\theta) \): \[ \frac{-\sin^2(\theta)}{\cos(2\theta) - 1} \] Using the identity \( \cos(2\theta) = 1 - 2\sin^2(\theta) \): \[ \cos(2\theta) - 1 = -2\sin^2(\theta) \] Thus, the expression simplifies to: \[ \frac{-\sin^2(\theta)}{-2\sin^2(\theta)} = \frac{1}{2} \] ### Final Answer The simplified expression is: \[ \frac{1}{2} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s simplify the expression step by step! First, remember that \( \cos(180^\circ - \theta) = -\cos(\theta) \), which means \( \cos^2(180^\circ - \theta) = \cos^2(\theta) \). Thus, the numerator becomes: \[ \cos^{2}(\theta) - \cos^{2}(\alpha) - \sin^{2}(-\alpha) = \cos^{2}(\theta) - \cos^{2}(\alpha) - \sin^{2}(\alpha) \] Since \( \sin(-\alpha) = -\sin(\alpha) \), we can replace \( \sin^{2}(-\alpha) \) with \( \sin^{2}(\alpha) \). Next, for the denominator: \[ \cos(360^\circ - 2\theta) = \cos(2\theta) \] because \( \cos \) is an even function. So, the denominator simplifies to: \[ \cos(2\theta) - 1 \] Now, we can express the entire equation as follows: \[ \frac{\cos^{2}(\theta) - \cos^{2}(\alpha) - \sin^{2}(\alpha)}{\cos(2\theta) - 1} \] To simplify further, notice that \( \cos(2\theta) = 2\cos^{2}(\theta) - 1\), so: \[ \cos(2\theta) - 1 = 2\cos^{2}(\theta) - 1 - 1 = 2\cos^{2}(\theta) - 2 = 2(\cos^{2}(\theta) - 1) \] This means that the whole expression can be rewritten, but simplifying it further requires knowing specific values for \( \alpha \) and \( \theta \) or more context. In conclusion, the expression simplifies to: \[ \frac{\cos^{2}(\theta) - \cos^{2}(\alpha) - \sin^{2}(\alpha)}{2(\cos^{2}(\theta) - 1)} \] with the trigonometric identities factored in place of variable evaluations.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad