Pregunta
upstudy study bank question image url

Find all solutions in the interval \( [0,2 \pi) \). \( \sin 2 x \sin x-\cos x=0 \) \( x=\square \) (Type an exact answer, using \( \pi \) as needed. Use a comma to separate answers as needed. Use integers or fractions for any numbers in the expression.) 0 of 1

Ask by Gibbs Conner. in the United States
Feb 08,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \).

Solución

Solve the equation \( \sin(2x)\sin(x)-\cos(x)=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sin\left(2x\right)\sin\left(x\right)-\cos\left(x\right)=0\) - step1: Rewrite the expression: \(2\sin\left(x\right)\cos\left(x\right)\sin\left(x\right)-\cos\left(x\right)=0\) - step2: Expand the expression: \(2\sin^{2}\left(x\right)\cos\left(x\right)-\cos\left(x\right)=0\) - step3: Factor the expression: \(\cos\left(x\right)\left(2\sin^{2}\left(x\right)-1\right)=0\) - step4: Separate into possible cases: \(\begin{align}&\cos\left(x\right)=0\\&2\sin^{2}\left(x\right)-1=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=\frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\\&x=\frac{\pi }{4}+\frac{k\pi }{2},k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(x=\left\{ \begin{array}{l}\frac{\pi }{4}+\frac{k\pi }{2}\\\frac{\pi }{2}+k\pi \end{array}\right.,k \in \mathbb{Z}\) The solutions to the equation \( \sin 2x \sin x - \cos x = 0 \) in the interval \( [0, 2\pi) \) are \( x = \frac{\pi}{4} + \frac{k\pi}{2} \) and \( x = \frac{\pi}{2} + k\pi \) for any integer \( k \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( \sin 2x \sin x - \cos x = 0 \), we can use the identity \( \sin 2x = 2 \sin x \cos x \). This transforms our equation into: \[ 2 \sin x \cos x \sin x - \cos x = 0 \] Factoring out \( \cos x \) gives us: \[ \cos x (2 \sin^2 x - 1) = 0 \] This results in two equations: 1. \( \cos x = 0 \) 2. \( 2 \sin^2 x - 1 = 0 \) For \( \cos x = 0 \), the solutions in the interval \( [0, 2\pi) \) are: \[ x = \frac{\pi}{2}, \frac{3\pi}{2} \] For \( 2 \sin^2 x - 1 = 0 \), we can solve for \( \sin^2 x \): \[ \sin^2 x = \frac{1}{2} \implies \sin x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] The solutions for \( \sin x = \frac{\sqrt{2}}{2} \) in \( [0, 2\pi) \) are: \[ x = \frac{\pi}{4}, \frac{3\pi}{4} \] And for \( \sin x = -\frac{\sqrt{2}}{2} \): \[ x = \frac{5\pi}{4}, \frac{7\pi}{4} \] Combining all solutions, we get: \[ x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4} \] Thus, the final answer is: \[ x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4} \]

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad