Pregunta
upstudy study bank question image url

1 Consider the sequence 21, \( , 36, b, 55 \) which has a second constant second difference of 1 11 Determine the values of \( a \) and \( b \) 12 Determine the \( \pi^{\text {to }} \) term of the sequence. (16) I. 3 Hence prove that the sum of any two consecutive terms in the sequence is a square number. ( \( S \) ) 2 Consider the sequence \( \frac{1}{2}+\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)+\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+\ldots+\left(\frac{1}{200}+\frac{2}{200}+\frac{3}{200}+\ldots+\frac{199}{200}\right) \) with \( \Gamma_{2}=\frac{1}{2} \) and \( T_{2}=\left(\frac{1}{3}+\frac{2}{3}\right)=1 \) and \( T_{n}=\left(\frac{1}{200}+\frac{2}{200}+\frac{3}{200}+\ldots \frac{199}{200}\right) \) 21 Calculate the values of the third and fourth terms. 2.2 Determine the number of terms in the sequence. 2.3 What is the value of the last term in the sequence? 24 Calculate the sum of all the terms in the sequence. Prove that: \( \sum_{n=1}^{k} 2^{n-1}=2^{k}-1 \) Prove, without using a formula, that the sum of the series \( 3^{2}+3^{4}+3^{6}+\ldots \) for twenty terms

Ask by Wood Harrington. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Part 1: Sequence Analysis** 1. **Values of \( a \) and \( b \):** - \( a = 28 \) - \( b = 45 \) 2. **\( n^{\text{th}} \) Term of the Sequence:** \[ T_n = \frac{1}{2}n^2 + \frac{11}{2}n + 15 \] **Part 2: Sum of Two Consecutive Terms** The sum of two consecutive terms \( T_n + T_{n+1} \) is: \[ T_n + T_{n+1} = n^2 + 12n + 30 \] This sum is not a perfect square but can be expressed as \( (n + 6)^2 - 6 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To solve the sequence problem, we start with the given terms: 21, \( a \), 36, \( b \), 55. Since the second differences are constant and equal to 1, this suggests a quadratic sequence. By calculating the first differences, you’ll find them to be the sequence of numbers increasing by 2 each time. From this, you can deduce the values of \( a \) (which is 28) and \( b \) (which is 45). Now, for the \( n^{\text{th}} \) term, you can derive the formula based on the quadratic nature, yielding \( a_n = \frac{1}{2}n^2 + \frac{41}{2}n - 7 \). To show the sum of any two consecutive terms is a perfect square, you can express the sum as \( a_n + a_{n+1} \) and demonstrate this results in a perfect square through proper algebraic manipulation. The sequence you’re examining starts with \( \frac{1}{2} \) and continues to \( \frac{199}{200} \). The terms of the form \( \frac{1}{n} + \frac{2}{n} + ... + \frac{(n-1)}{n} \) sum up in a controlled manner. For the last term in this sequence, which is \( T_{200} \), you’ll find the sum simplifies nicely to \( \frac{199 \times 200}{2 \times 200} = \frac{199}{2} \). For the series sum \( \sum_{n=1}^{k} 2^{n-1} = 2^{k} - 1 \), one can prove it inductively: If it holds for \( n \), show it holds for \( n + 1 \) by manipulating the left side to fit the suggested form. Similarly, the series \( 3^2 + 3^4 + ... + 3^{20} \) can be computed as a geometric progression where the first term is \( 3^2 \), the ratio is \( 3^2 \), and it can be summed to reach a neat conclusion about its total values over twenty terms.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad