For \( f(x)=x^{2}+5 \) and \( g(x)=\sqrt{x-1} \), find the following composite functions and state the domain of each. \( \begin{array}{lll}\text { (a) } f \circ g & \text { (b) } g \circ f & \text { (c) } f \circ f \\ \text { (d) } g \circ g \\ \text { (a) }(f \circ g)(x)=x+4 \\ \text { (Simplify your answer.) } \\ \text { The domain of } f \circ g \text { is } x \geq 1 .\end{array} \) (Type your answer in interval notation. Use integers or fractions for any numbers in the expression. Simplify your answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the composite functions, we perform the following calculations: (a) \( f \circ g(x) = f(g(x)) = f(\sqrt{x-1}) = (\sqrt{x-1})^2 + 5 = x - 1 + 5 = x + 4 \). The domain of \( f \circ g \) is \( x \geq 1 \) because \( g(x) \) must be defined, which requires \( x - 1 \geq 0 \). (b) \( g \circ f(x) = g(f(x)) = g(x^2 + 5) = \sqrt{(x^2 + 5) - 1} = \sqrt{x^2 + 4} \). The domain of \( g \circ f \) is all real numbers \( \mathbb{R} \) since \( x^2 + 4 \) is always non-negative. (c) \( f \circ f(x) = f(f(x)) = f(x^2 + 5) = (x^2 + 5)^2 + 5 = x^4 + 10x^2 + 25 + 5 = x^4 + 10x^2 + 30 \). The domain of \( f \circ f \) is also all real numbers \( \mathbb{R} \). (d) \( g \circ g(x) = g(g(x)) = g(\sqrt{x-1}) = \sqrt{\sqrt{x-1} - 1} \). The domain of \( g \circ g \) is \( x \geq 2 \) because \( \sqrt{x-1} \) must be at least 1 for \( g \) to be defined. To summarize: - \( (f \circ g)(x) = x + 4 \) with domain \( [1, \infty) \) - \( (g \circ f)(x) = \sqrt{x^2 + 4} \) with domain \( (-\infty, \infty) \) - \( (f \circ f)(x) = x^4 + 10x^2 + 30 \) with domain \( (-\infty, \infty) \) - \( (g \circ g)(x) = \sqrt{\sqrt{x-1} - 1} \) with domain \( [2, \infty) \)
