Pregunta
upstudy study bank question image url

Write an equation for a line passing through the point \( (5,-3) \) that is parallel to the line \( 5 x+7 y=9 \). Then write a second equation for a line passing through the point \( (5,-3) \) that is perpendicular to the line \( 5 x+7 y=9 \).

Ask by Dickson Rodriquez. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equations are: 1. \( y = -\frac{5}{7}x + \frac{4}{7} \) (parallel line) 2. \( y = \frac{7}{5}x - 10 \) (perpendicular line)

Solución

To solve this problem, we need to find two equations for lines based on the given conditions. ### Step 1: Find the slope of the given line The equation of the line is given in standard form: \[ 5x + 7y = 9 \] To find the slope, we can convert this equation to slope-intercept form \(y = mx + b\), where \(m\) is the slope. 1. Rearranging the equation: \[ 7y = -5x + 9 \] 2. Dividing by 7: \[ y = -\frac{5}{7}x + \frac{9}{7} \] From this, we see that the slope \(m\) of the line is \(-\frac{5}{7}\). ### Step 2: Equation of the parallel line Lines that are parallel have the same slope. Therefore, the slope of the line we want to find is also \(-\frac{5}{7}\). Using the point-slope form of the equation of a line, which is given by: \[ y - y_1 = m(x - x_1) \] where \((x_1, y_1)\) is the point through which the line passes, we can substitute \(m = -\frac{5}{7}\) and the point \((5, -3)\): \[ y - (-3) = -\frac{5}{7}(x - 5) \] Simplifying this: \[ y + 3 = -\frac{5}{7}x + \frac{25}{7} \] Subtracting 3 from both sides: \[ y = -\frac{5}{7}x + \frac{25}{7} - 3 \] Converting 3 to a fraction with a denominator of 7: \[ y = -\frac{5}{7}x + \frac{25}{7} - \frac{21}{7} \] This simplifies to: \[ y = -\frac{5}{7}x + \frac{4}{7} \] ### Step 3: Equation of the perpendicular line Lines that are perpendicular have slopes that are negative reciprocals of each other. The slope of the perpendicular line will be: \[ m = \frac{7}{5} \] Using the point-slope form again with the new slope: \[ y - (-3) = \frac{7}{5}(x - 5) \] Simplifying this: \[ y + 3 = \frac{7}{5}x - \frac{35}{5} \] Subtracting 3 (or \(\frac{15}{5}\)) from both sides: \[ y = \frac{7}{5}x - \frac{35}{5} - \frac{15}{5} \] This simplifies to: \[ y = \frac{7}{5}x - \frac{50}{5} \] Thus, we have: \[ y = \frac{7}{5}x - 10 \] ### Final Equations 1. The equation of the line parallel to \(5x + 7y = 9\) passing through \((5, -3)\) is: \[ y = -\frac{5}{7}x + \frac{4}{7} \] 2. The equation of the line perpendicular to \(5x + 7y = 9\) passing through \((5, -3)\) is: \[ y = \frac{7}{5}x - 10 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the equation of a line passing through the point \( (5,-3) \) that is parallel to the line \( 5x + 7y = 9 \), we first need to determine the slope of the given line. Rearranging to slope-intercept form, we get \( y = -\frac{5}{7}x + \frac{9}{7} \). The slope is \( -\frac{5}{7} \), so the parallel line will have the same slope. Using the point-slope form of the equation, we plug in the point \( (5, -3) \): \[ y + 3 = -\frac{5}{7}(x - 5) \] Simplifying, the equation of the line parallel to the given line is: \[ y = -\frac{5}{7}x + \frac{1}{7} \] For the perpendicular line, the slope is the negative reciprocal of the original slope. The slope of the perpendicular line will be \( \frac{7}{5} \). Using the same point \( (5,-3) \): \[ y + 3 = \frac{7}{5}(x - 5) \] Simplifying this, we find that the equation of the line perpendicular to the original line is: \[ y = \frac{7}{5}x - 8 \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad