Applications 3.1 Express the following as single trigonometry ratio: 3.1.1 \( \cos 2 x \cdot \cos 3 x-\sin 2 x \cdot \sin 3 x \) 3.1.2 \( \sin 2 x \cdot \cos x+\cos 2 x \cdot \sin x \) \( \qquad \) (3) 3.2.1 \( \sin 85^{\circ} \cdot \cos 25^{\circ}-\cos 85^{\circ} \cdot \sin 25^{\circ} \) \( \qquad \) \( \qquad \) \( \qquad \) 3.2.2 \( \cos 160^{\circ} \cdot \cos 10^{\circ}+\sin 160^{\circ} \cdot \sin 10^{\circ} \) (4) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
When you see the expression \( \cos A \cdot \cos B - \sin A \cdot \sin B \), think of it as a cozy trigonometric little house that can be neatly packed up into \( \cos(A + B) \). So, in this case, \( \cos 2x \cdot \cos 3x - \sin 2x \cdot \sin 3x = \cos(2x + 3x) = \cos(5x) \). Now for that fun little gem \( \sin A \cdot \cos B + \cos A \cdot \sin B \)! This is the cozy duet of our trigonometric functions coming together, which you've probably guessed leads to \( \sin(A + B) \). So, wrapping this up, \( \sin 2x \cdot \cos x + \cos 2x \cdot \sin x = \sin(2x + x) = \sin(3x) \). And don't forget when you're dealing with specific angles like \( \sin 85^{\circ} \cdot \cos 25^{\circ} - \cos 85^{\circ} \cdot \sin 25^{\circ} \), you can simplify that to \( \sin(85^{\circ} - 25^{\circ}) = \sin(60^{\circ}) \). Similarly, \( \cos 160^{\circ} \cdot \cos 10^{\circ} + \sin 160^{\circ} \cdot \sin 10^{\circ} \) can be swiftly packaged as \( \cos(160^{\circ} - 10^{\circ}) = \cos(150^{\circ}) \). Easy-peasy!
