Pregunta
upstudy study bank question image url

An airplane crosses the Atlantic Ocean ( 3000 miles) with an airspeed of 550 miles per hour. The cost \( C \) (in dollars) per passenger is given by \( C(x)=75+\frac{x}{10}+\frac{32,000}{x} \) where \( x \) is the ground speed (airspeed \( \pm \) wind). (a) What is the cost per passenger for quiescent (no wind) conditions? \( \$ \square \) (Round to the nearest cent as needed.)

Ask by Cox Grant. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The cost per passenger for no wind conditions is \$188.18.

Solución

To find the cost per passenger for quiescent (no wind) conditions, we need to determine the ground speed \( x \) when there is no wind. In this case, the ground speed \( x \) is equal to the airspeed of the airplane. Given: - Airspeed = 550 miles per hour - Cost function: \( C(x) = 75 + \frac{x}{10} + \frac{32,000}{x} \) Since there is no wind, we have: \[ x = 550 \] Now, we can substitute \( x \) into the cost function \( C(x) \) to find the cost per passenger. \[ C(550) = 75 + \frac{550}{10} + \frac{32,000}{550} \] Let's calculate each term step by step: 1. Calculate \( \frac{550}{10} \): \[ \frac{550}{10} = 55 \] 2. Calculate \( \frac{32,000}{550} \): \[ \frac{32,000}{550} \approx 58.18 \] Now, we can substitute these values back into the cost function: \[ C(550) = 75 + 55 + 58.18 \] Now, let's calculate the total: \[ C(550) = 75 + 55 + 58.18 = 188.18 \] Thus, the cost per passenger for quiescent conditions is approximately: \[ \boxed{188.18} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the cost \( C(x) \) per passenger under quiescent conditions (no wind), the ground speed \( x \) equals the airspeed of the plane, which is 550 miles per hour. Plugging this value into the cost function, we can calculate: \[ C(550) = 75 + \frac{550}{10} + \frac{32,000}{550} \] Calculating each term: - \( \frac{550}{10} = 55 \) - \( \frac{32,000}{550} \approx 58.18 \) Bringing it all together: \[ C(550) = 75 + 55 + 58.18 = 188.18 \] So the cost per passenger for quiescent conditions is \( \$188.18 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad