Given the function \( p(x)=\left\{\begin{array}{ll}4 x+7 & x \leq 0 \\ -3 x^{2}-3 x+7 & x>0\end{array}\right. \) Calculate the following values: \( \quad p(6)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find \( p(6) \), we need to determine which piece of the piecewise function applies. Since \( 6 > 0 \), we use the second part of the function: \[ p(x) = -3x^2 - 3x + 7. \] Now, substituting \( 6 \) into the equation: \[ p(6) = -3(6^2) - 3(6) + 7. \] Calculating step-by-step: 1. Calculate \( 6^2 \): \[ 6^2 = 36. \] 2. Multiply by \(-3\): \[ -3(36) = -108. \] 3. Calculate \(-3(6)\): \[ -3(6) = -18. \] 4. Combine the results: \[ p(6) = -108 - 18 + 7. \] Now, simplify: \[ -108 - 18 = -126, \] So, \[ -126 + 7 = -119. \] Thus, \( p(6) = -119 \). Final answer: \( p(6) = -119 \)
