Pregunta
upstudy study bank question image url

\begin{tabular}{|l|}\hline How many terms are in the following \\ expression: \( 2 x^{2}-3 y^{2} \div 2 x^{2} \times y z \)\end{tabular}

Ask by Black Gibson. in South Africa
Nov 13,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expression has 2 terms.

Solución

To determine how many terms are in the expression \( 2 x^{2} - 3 y^{2} \div 2 x^{2} \times y z \), we first need to simplify the expression. 1. **Identify the components of the expression**: - The expression consists of two parts: \( 2 x^{2} \) and \( -3 y^{2} \div 2 x^{2} \times y z \). 2. **Simplify the second part**: - The division and multiplication in the second part can be simplified as follows: \[ -3 y^{2} \div 2 x^{2} \times y z = -3 y^{2} \times \frac{1}{2 x^{2}} \times y z = -\frac{3 y^{3} z}{2 x^{2}} \] 3. **Combine the terms**: - Now we can rewrite the entire expression: \[ 2 x^{2} - \frac{3 y^{3} z}{2 x^{2}} \] 4. **Identify the terms**: - The expression now consists of two distinct parts: - The first term: \( 2 x^{2} \) - The second term: \( -\frac{3 y^{3} z}{2 x^{2}} \) Since both parts are separate and cannot be combined further, we conclude that there are **2 terms** in the expression. Thus, the final answer is: \[ \boxed{2} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine how many terms are in the expression \( 2 x^{2}-3 y^{2} \div 2 x^{2} \times y z \), we first recognize that a term is a single mathematical entity and can be separated by addition or subtraction. In this case, the expression can be simplified, so let's look at it step by step: 1. The expression consists of \( 2 x^2 \) and \( -3 y^2 \div 2 x^2 \times y z \). But notice that \( -3 y^2 \div 2 x^2 \times y z \) operates together as one term after simplifying. 2. Upon evaluating \( -3 y^2 \div (2 x^{2} \times y z) \), we consider that it changes the structure of the term but doesn't introduce additional distinct terms because it’s still a division of constants and variables. So we identify the original \( 2 x^2 \) as one term and the result of \( -3 y^2 \div (2 x^{2} \times y z) \) as another term, totaling **two terms** in the expression.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad