Pregunta
upstudy study bank question image url

Graph the line with the equation \( y=3 x-3 \)

Ask by Patel Blake. in the United States
Jan 08,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the line \( y = 3x - 3 \), plot the y-intercept at (0, -3) and use the slope of 3 to find another point, such as (1, 0). Draw a straight line through these points to represent the equation.

Solución

Sure, I can help you graph the linear equation \( y = 3x - 3 \). Here's a step-by-step guide to plotting this line: ### 1. Understand the Equation The equation \( y = 3x - 3 \) is in the slope-intercept form \( y = mx + b \), where: - **\( m \)** is the slope of the line. - **\( b \)** is the y-intercept (the point where the line crosses the y-axis). For \( y = 3x - 3 \): - **Slope (m)** = 3 - **Y-intercept (b)** = -3 ### 2. Plot the Y-Intercept Start by plotting the y-intercept on the coordinate plane. - **Point:** (0, -3) ![Point](https://i.imgur.com/E0KQF8a.png) ### 3. Use the Slope to Find Another Point The slope \( m = 3 \) can be interpreted as "rise over run." This means: - **Rise (Δy):** 3 units up - **Run (Δx):** 1 unit to the right From the y-intercept (0, -3): - Move **1 unit to the right**: New x-coordinate = 0 + 1 = 1 - Move **3 units up**: New y-coordinate = -3 + 3 = 0 - **Point:** (1, 0) ![Second Point](https://i.imgur.com/ABu58hJ.png) ### 4. Plot the Second Point Plot the second point on the graph. - **Point:** (1, 0) ### 5. Draw the Line Connect the two points with a straight line, and extend it in both directions. This line represents the equation \( y = 3x - 3 \). ![Graph](https://i.imgur.com/PTWmImB.png) ### 6. Additional Points (Optional) To ensure accuracy, you can plot additional points by choosing different values for \( x \) and solving for \( y \). | \( x \) | \( y = 3x - 3 \) | |---------|------------------| | -1 | \( y = 3(-1) - 3 = -6 \) → (-1, -6) | | 2 | \( y = 3(2) - 3 = 3 \) → (2, 3) | | 3 | \( y = 3(3) - 3 = 6 \) → (3, 6) | Plot these points and ensure they all lie on the line you've drawn. ### Final Graph Here is a visual representation of the graph: ``` y | 6| * 5| 4| 3| * 2| 1| 0|--------*--------- -1| -2| -3|* -4| -5| -6| --------------------- x -2 -1 0 1 2 3 ``` - **(0, -3)** and **(1, 0)** are plotted, and the line extends through these points. - Additional points like **(-1, -6)**, **(2, 3)**, and **(3, 6)** also lie on the line. ### Summary - **Slope (3):** For every 1 unit increase in \( x \), \( y \) increases by 3 units. - **Y-Intercept (-3):** The line crosses the y-axis at (0, -3). - **Linearity:** The graph is a straight line since the equation is linear. Feel free to use graphing software or graph paper to plot the points accurately and draw the line. If you have any more questions or need further assistance, let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To graph the line given by the equation \( y=3x-3 \), start by identifying its slope and y-intercept. The slope is 3, indicating that for every unit increase in \( x \), the \( y \) value increases by 3. The y-intercept is -3, meaning the line crosses the y-axis at (0, -3). From there, you can plot another point using the slope – for example, when \( x=1 \), \( y=0 \). Connect these points, and voilà! You have a straight line. For a quick visual check, consider the symmetrical nature of straight lines. If you take another point, say \( x=-1 \), you will find \( y=-6 \), giving you a second point (-1, -6). The line will perfectly extend between these points in both directions. Enjoy your graphing adventure!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad