Pregunta
upstudy study bank question image url

10) \( x^{2}-6 x+9>0 \)

Ask by Morgan Coleman. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the inequality \( x^{2}-6x+9>0 \) is all real numbers except \( x = 3 \).

Solución

Solve the quadratic equation by following steps: - step0: Solve by factoring: \(x^{2}-6x+9=0\) - step1: Factor the expression: \(\left(x-3\right)^{2}=0\) - step2: Simplify the expression: \(x-3=0\) - step3: Move the constant to the right side: \(x=0+3\) - step4: Remove 0: \(x=3\) To solve the inequality \( x^{2}-6x+9>0 \), we first need to find the roots of the corresponding equation \( x^{2}-6x+9=0 \). 1. **Finding the roots:** The equation can be factored as: \[ (x-3)^2 = 0 \] This gives us a double root at \( x = 3 \). 2. **Analyzing the inequality:** The expression \( x^{2}-6x+9 \) can be rewritten as \( (x-3)^2 \). Now, we need to determine where \( (x-3)^2 > 0 \): - The expression \( (x-3)^2 \) is equal to 0 at \( x = 3 \). - For all other values of \( x \) (i.e., \( x < 3 \) or \( x > 3 \)), \( (x-3)^2 \) is positive. 3. **Conclusion:** Therefore, the solution to the inequality \( x^{2}-6x+9>0 \) is: \[ x < 3 \quad \text{or} \quad x > 3 \] In interval notation, this can be expressed as: \[ (-\infty, 3) \cup (3, \infty) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

This inequality can be factored into \( (x - 3)^2 > 0 \). The expression \( (x - 3)^2 \) is a perfect square, meaning it is always non-negative, equal to zero only when \( x = 3 \). Therefore, the inequality is satisfied for all \( x \) except \( x = 3 \). So, the solution is \( x < 3 \) or \( x > 3 \). To visualize this, you can think of \( (x - 3)^2 \) as a U-shaped curve that touches the x-axis at \( x = 3 \) but never dips below it. Therefore, the area where this curve is above zero (indicating our inequality holds true) includes all points except that one pesky point where it equals zero! It's like the curve is having a lonely party, and everyone is invited except for the guest of honor!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad