B) Graph each of the following
i) \( f(x)=\left\{\begin{array}{ll}-x^{2} & \text { for } x \geq 0 \\ 2 x^{2} & \text { for } x<0\end{array}\right. \)
i) \( f(x)=\left\{\begin{array}{cc}2 x+3 & \text { if } x<0 \\ x^{2} & \text { if } 0 \leq x<2 \\ \text { I if } x \geq 2\end{array}\right. \)
iii) \( f(x)=\left\{\begin{array}{c}2 \text { if } x>2 \\ 1 \text { if } 0
Ask by Hilton Wilson. in Zambia
Feb 20,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To graph these piecewise functions, let's first visualize them step by step for each function.
For the first function \( f(x)=\left\{\begin{array}{ll}-x^{2} & \text { for } x \geq 0 \\ 2 x^{2} & \text { for } x<0\end{array}\right. \):
- For \( x \geq 0 \), you'll plot a downward-opening parabola starting from the origin (0,0).
- For \( x < 0 \), you'll plot an upward-opening parabola, which intersects the y-axis at (0,0) and continues on the left.
For the second function \( f(x)=\left\{\begin{array}{cc}2 x+3 & \text { if } x<0 \\ x^{2} & \text { if } 0 \leq x<2 \\ \text { I if } x \geq 2\end{array}\right. \):
- For \( x < 0 \), you will have a straight line that crosses the y-axis at (0,3) and moves downward.
- For \( 0 \leq x < 2 \), plot a parabola that curves upwards starting from (0,0) to (2,4).
- For \( x \geq 2 \), you will have a constant value of 1 on the graph.
For the third function \( f(x)=\left\{\begin{array}{c}2 \text { if } x>2 \\ 1 \text { if } 0
