Pregunta
upstudy study bank question image url

B) Graph each of the following i) \( f(x)=\left\{\begin{array}{ll}-x^{2} & \text { for } x \geq 0 \\ 2 x^{2} & \text { for } x<0\end{array}\right. \) i) \( f(x)=\left\{\begin{array}{cc}2 x+3 & \text { if } x<0 \\ x^{2} & \text { if } 0 \leq x<2 \\ \text { I if } x \geq 2\end{array}\right. \) iii) \( f(x)=\left\{\begin{array}{c}2 \text { if } x>2 \\ 1 \text { if } 0
Ask by Hilton Wilson. in Zambia
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph each piecewise function: 1. **Function i):** - For \( x \geq 0 \): Draw a downward-opening parabola starting at (0,0). - For \( x < 0 \): Draw an upward-opening parabola starting at (0,0). 2. **Function ii):** - For \( x < 0 \): Draw the line \( y = 2x + 3 \). - For \( 0 \leq x < 2 \): Draw the parabola \( y = x^2 \). - For \( x \geq 2 \): Draw a horizontal line at \( y = 1 \). 3. **Function iii):** - For \( x > 2 \): Draw a horizontal line at \( y = 2 \). - For \( 0 < x \leq 2 \): Draw a horizontal line at \( y = 1 \). - For \( x \leq 0 \): Draw a horizontal line at \( y = -1 \). 4. **Function iv):** - For \( x \geq 0 \): Draw the line \( y = 2x + 1 \). - For \( x < 0 \): Draw the parabola \( y = x^2 \). Use graphing tools to plot these functions accurately by defining each piece within its respective interval.

Solución

It seems that the system does not currently support plotting functions directly. However, I can guide you through the process of graphing each of the piecewise functions step by step. ### i) \( f(x)=\left\{\begin{array}{ll}-x^{2} & \text { for } x \geq 0 \\ 2 x^{2} & \text { for } x<0\end{array}\right. \) 1. **For \( x \geq 0 \)**: The function is \( f(x) = -x^2 \). This is a downward-opening parabola starting from the origin (0,0). 2. **For \( x < 0 \)**: The function is \( f(x) = 2x^2 \). This is an upward-opening parabola that starts from the origin and goes upwards as \( x \) moves left. ### ii) \( f(x)=\left\{\begin{array}{cc}2 x+3 & \text { if } x<0 \\ x^{2} & \text { if } 0 \leq x<2 \\ \text { I if } x \geq 2\end{array}\right. \) 1. **For \( x < 0 \)**: The function is \( f(x) = 2x + 3 \). This is a straight line with a slope of 2, crossing the y-axis at (0,3). 2. **For \( 0 \leq x < 2 \)**: The function is \( f(x) = x^2 \). This is a standard upward-opening parabola starting from the origin. 3. **For \( x \geq 2 \)**: The function is constant \( f(x) = 1 \). ### iii) \( f(x)=\left\{\begin{array}{c}2 \text { if } x>2 \\ 1 \text { if } 0 2 \)**: The function is constant \( f(x) = 2 \). 2. **For \( 0 < x \leq 2 \)**: The function is constant \( f(x) = 1 \). 3. **For \( x \leq 0 \)**: The function is constant \( f(x) = -1 \). ### iv) \( f(x)=\left\{\begin{array}{c}2 x+1 \text { if } x \geq 0 \\ x^{2} \text { if } x<0\end{array}\right. \) 1. **For \( x \geq 0 \)**: The function is \( f(x) = 2x + 1 \). This is a straight line with a slope of 2, crossing the y-axis at (0,1). 2. **For \( x < 0 \)**: The function is \( f(x) = x^2 \). This is an upward-opening parabola starting from the origin. ### Summary of Graphing Steps To graph these functions: - Plot the points and shapes for each piece of the function based on the defined intervals. - Use a graphing tool or software to visualize the piecewise functions accurately. - Ensure to mark the points where the function changes its definition clearly. If you have access to graphing software or tools, you can input these functions directly to visualize them. If you need further assistance with any specific part, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph these piecewise functions, let's first visualize them step by step for each function. For the first function \( f(x)=\left\{\begin{array}{ll}-x^{2} & \text { for } x \geq 0 \\ 2 x^{2} & \text { for } x<0\end{array}\right. \): - For \( x \geq 0 \), you'll plot a downward-opening parabola starting from the origin (0,0). - For \( x < 0 \), you'll plot an upward-opening parabola, which intersects the y-axis at (0,0) and continues on the left. For the second function \( f(x)=\left\{\begin{array}{cc}2 x+3 & \text { if } x<0 \\ x^{2} & \text { if } 0 \leq x<2 \\ \text { I if } x \geq 2\end{array}\right. \): - For \( x < 0 \), you will have a straight line that crosses the y-axis at (0,3) and moves downward. - For \( 0 \leq x < 2 \), plot a parabola that curves upwards starting from (0,0) to (2,4). - For \( x \geq 2 \), you will have a constant value of 1 on the graph. For the third function \( f(x)=\left\{\begin{array}{c}2 \text { if } x>2 \\ 1 \text { if } 0 2 \), it then jumps to a constant value of 2. For the fourth function \( f(x)=\left\{\begin{array}{c}2 x+1 \text { if } x \geq 0 \\ x^{2} \text { if } x<0\end{array}\right. \): - For \( x < 0 \), you'll plot an upward-opening parabola, starting from the origin. - For \( x \geq 0 \), the line has a slope of 2 and crosses the y-axis at (0,1). Now you can sketch them using the key points and shapes for each section of the piecewise definitions! Happy graphing!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad