Pregunta
upstudy study bank question image url

Choose the end behavior of the graph of each polynomial function. \( \square \) Falls to the left and rises to the right (a) \( f(x)=6 x^{3}-7 x^{2}-4 x+3 \) Rises to the left and falls to the right Rises to the left and rises to the right Falls to the left and falls to the right Falls to the left and rises to the right (b) \( f(x)=x^{6}-x^{4}+4 x^{3}-5 x \) Rises to the left and falls to the right Rises to the left and rises to the right Falls to the left and falls to the right Falls to the left and rises to the right (c) \( f(x)=-2 x(x-1)^{2}(x+3) \) Rises to the left and falls to the right Rises to the left and rises to the right Falls to the left and falls to the right

Ask by Best Medina. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Falls to the left and rises to the right (b) Rises to the left and rises to the right (c) Falls to the left and falls to the right

Solución

To determine the end behavior of a polynomial function, look at its degree and the sign of its leading coefficient. Here’s how to analyze each function: (a) f(x) = 6x³ – 7x² – 4x + 3 • The leading term is 6x³. • The degree is 3 (odd) and the coefficient is positive. • For an odd-degree polynomial with a positive leading coefficient, as x → –∞, f(x) → –∞ (falls to the left) and as x → +∞, f(x) → +∞ (rises to the right). Answer: Falls to the left and rises to the right (b) f(x) = x⁶ – x⁴ + 4x³ – 5x • The leading term is x⁶. • The degree is 6 (even) and the leading coefficient is positive. • For an even-degree polynomial with a positive leading coefficient, as x → ±∞, f(x) → +∞ (rises on both ends). Answer: Rises to the left and rises to the right (c) f(x) = –2x(x – 1)²(x + 3) • First, determine the overall degree: x (degree 1) multiplied by (x – 1)² (degree 2) multiplied by (x + 3) (degree 1) gives a total degree of 1 + 2 + 1 = 4. • The coefficient: The leading term from x, (x – 1)², and (x + 3) would be –2 · x · x² · x = –2x⁴. • The degree is 4 (even) and the leading coefficient is negative. • For an even-degree polynomial with a negative leading coefficient, as x → ±∞, f(x) → –∞ (falls on both ends). Answer: Falls to the left and falls to the right Thus, the correct end behaviors for the graphs are: (a) Falls to the left and rises to the right (b) Rises to the left and rises to the right (c) Falls to the left and falls to the right

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When analyzing the end behavior of polynomials, it’s all about the leading term's degree and coefficient. For (a) \( f(x) = 6x^3 - 7x^2 - 4x + 3 \), since the leading term is \( 6x^3 \) (an odd degree with a positive coefficient), the graph falls to the left and rises to the right. For (b) \( f(x) = x^6 - x^4 + 4x^3 - 5x \), the leading term is \( x^6 \) (an even degree with a positive coefficient), so the graph rises to the left and rises to the right. For (c) \( f(x) = -2x(x-1)^2(x+3) \), the leading term simplifies to \(-2x^4\) (even degree with a negative coefficient), resulting in the graph falling to the left and falling to the right. To summarize the end behaviors: (a) Falls to the left and rises to the right (b) Rises to the left and rises to the right (c) Falls to the left and falls to the right

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad