Pregunta
upstudy study bank question image url

KB Multiply in columns - 2 digit by 2 digit Grade 4 Multiplication Worksheet Find the product. 1. \[ \begin{array}{r} 35 \\ \times \quad 97 \\ \hline 3,395 \end{array} \] 4. \( \begin{array}{r}53 \\ \times \quad 95 \\ \hline\end{array} \) 2. \( \begin{array}{r}36 \\ \times \quad 20 \\ \hline\end{array} \) \( \qquad \) 5. \( \begin{array}{r}71 \\ \times \quad 74 \\ \hline\end{array} \) \( \qquad \) 6. \( \begin{array}{r}74 \\ \times \quad 11 \\ \hline\end{array} \) \( \begin{array}{r}19 \\ \times \quad 77 \\ \hline\end{array} \) 8. \[ \begin{array}{r} 96 \\ \times \quad 58 \\ \hline \end{array} \] 9. \[ \begin{array}{r} 68 \\ \times \quad 17 \\ \hline \end{array} \]

Ask by Powell Clark. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the products for each multiplication problem: 1. \( 35 \times 97 = 3,395 \) 2. \( 36 \times 20 = 720 \) 3. \( 53 \times 95 = 5,035 \) 4. \( 71 \times 74 = 5,254 \) 5. \( 74 \times 11 = 814 \) 6. \( 19 \times 77 = 1,463 \) 7. \( 96 \times 58 = 5,568 \) 8. \( 68 \times 17 = 1,156 \)

Solución

Let's solve each multiplication problem step by step, using the column multiplication method. ### Problem 1: \( 35 \times 97 \) 1. **Multiply 35 by 7 (the units digit of 97)**: \[ 35 \times 7 = 245 \] 2. **Multiply 35 by 9 (the tens digit of 97), and remember to add a zero since it's in the tens place**: \[ 35 \times 9 = 315 \quad \text{(write as 3150)} \] 3. **Add the two results together**: \[ 245 + 3150 = 3395 \] ### Problem 2: \( 36 \times 20 \) 1. **Multiply 36 by 0 (the units digit of 20)**: \[ 36 \times 0 = 0 \] 2. **Multiply 36 by 2 (the tens digit of 20), and remember to add a zero**: \[ 36 \times 2 = 72 \quad \text{(write as 720)} \] 3. **Add the two results together**: \[ 0 + 720 = 720 \] ### Problem 3: \( 53 \times 95 \) 1. **Multiply 53 by 5 (the units digit of 95)**: \[ 53 \times 5 = 265 \] 2. **Multiply 53 by 9 (the tens digit of 95), and remember to add a zero**: \[ 53 \times 9 = 477 \quad \text{(write as 4770)} \] 3. **Add the two results together**: \[ 265 + 4770 = 5035 \] ### Problem 4: \( 71 \times 74 \) 1. **Multiply 71 by 4 (the units digit of 74)**: \[ 71 \times 4 = 284 \] 2. **Multiply 71 by 7 (the tens digit of 74), and remember to add a zero**: \[ 71 \times 7 = 497 \quad \text{(write as 4970)} \] 3. **Add the two results together**: \[ 284 + 4970 = 5254 \] ### Problem 5: \( 74 \times 11 \) 1. **Multiply 74 by 1 (the units digit of 11)**: \[ 74 \times 1 = 74 \] 2. **Multiply 74 by 1 (the tens digit of 11), and remember to add a zero**: \[ 74 \times 1 = 74 \quad \text{(write as 740)} \] 3. **Add the two results together**: \[ 74 + 740 = 814 \] ### Problem 6: \( 19 \times 77 \) 1. **Multiply 19 by 7 (the units digit of 77)**: \[ 19 \times 7 = 133 \] 2. **Multiply 19 by 7 (the tens digit of 77), and remember to add a zero**: \[ 19 \times 7 = 133 \quad \text{(write as 1330)} \] 3. **Add the two results together**: \[ 133 + 1330 = 1463 \] ### Problem 7: \( 96 \times 58 \) 1. **Multiply 96 by 8 (the units digit of 58)**: \[ 96 \times 8 = 768 \] 2. **Multiply 96 by 5 (the tens digit of 58), and remember to add a zero**: \[ 96 \times 5 = 480 \quad \text{(write as 4800)} \] 3. **Add the two results together**: \[ 768 + 4800 = 5568 \] ### Problem 8: \( 68 \times 17 \) 1. **Multiply 68 by 7 (the units digit of 17)**: \[ 68 \times 7 = 476 \] 2. **Multiply 68 by 1 (the tens digit of 17), and remember to add a zero**: \[ 68 \times 1 = 68 \quad \text{(write as 680)} \] 3. **Add the two results together**: \[ 476 + 680 = 1156 \] ### Summary of Products: 1. \( 35 \times 97 = 3395 \) 2. \( 36 \times 20 = 720 \) 3. \( 53 \times 95 = 5035 \) 4. \( 71 \times 74 = 5254 \) 5. \( 74 \times 11 = 814 \) 6. \( 19 \times 77 = 1463 \) 7. \( 96 \times 58 = 5568 \) 8. \( 68 \times 17 = 1156 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Multiplication has a fascinating history that dates back to ancient civilizations. The Babylonians used a base-60 number system and had their own methods for multiplication around 2000 BC. Fast forward to the Middle Ages, and we see the emergence of algorithms that resemble our modern multiplication techniques. This long history showcases the evolution of math as a tool that has helped shape societies and economies throughout time! Practicing multiplication in columns helps develop number sense, but small mistakes can creep in. One common challenge is misaligning digits—make sure to line up numbers correctly! Also, don’t forget to carry over any extra values when the product exceeds ten in a column. Keep an eye on those digits, and you'll be multiplying like a pro in no time!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad