Pregunta
upstudy study bank question image url

In Exercises \( 47-60 \), solve the linear system by the Gauss-Jordan elimination method. 47. \( \left\{\begin{array}{r}x+9 y=8 \\ 2 x+8 y=6\end{array}\right. \) 48. \( \left\{\begin{array}{r}\frac{1}{3} x+2 y=1 \\ -2 x-4 y=6\end{array}\right. \)

Ask by Gordon Rowe. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

47. \( x = -1 \), \( y = 1 \) 48. \( x = -6 \), \( y = \frac{3}{2} \)

Solución

Below are the step‐by‐step Gauss–Jordan elimination procedures for each system. ––––––––––––––––––––––––––––––––––––––––––– Problem 47: Solve   x + 9y = 8   2x + 8y = 6 Step 1. Write the augmented matrix:   [ 1 9 | 8 ]   [ 2 8 | 6 ] Step 2. Eliminate x from the second row. Replace row 2 with (row 2 − 2·row 1):   Row 2: [2 − 2·1, 8 − 2·9, 6 − 2·8] = [0, −10, −10]   So the matrix becomes:     [ 1 9 | 8 ]     [ 0 −10 | −10 ] Step 3. Scale row 2 by dividing by –10 to make the pivot 1:   Row 2: [0, (–10)/(–10), (–10)/(–10)] = [0, 1, 1]   New matrix:     [ 1 9 | 8 ]     [ 0 1 | 1 ] Step 4. Eliminate y from the first row. Replace row 1 with (row 1 − 9·row 2):   Row 1: [1, 9 − 9·1, 8 − 9·1] = [1, 0, -1] The matrix is now in reduced row–echelon form:   [ 1 0 | -1 ]   [ 0 1 | 1 ] Solution:   x = -1, y = 1 ––––––––––––––––––––––––––––––––––––––––––– Problem 48: Solve   (1/3)x + 2y = 1   –2x – 4y = 6 Step 1. Write the augmented matrix:   [ 1/3  2 | 1 ]   [ -2  –4 | 6 ] It is often easier to work with whole numbers, so multiply the first row by 3 (this is an allowed row-equivalent operation):   Row 1 × 3: [1, 6, 3]   Now the system becomes:     [ 1 6 | 3 ]     [ -2 –4 | 6 ] Step 2. Eliminate x from row 2. Multiply row 1 by 2 and add to row 2:   2·Row 1: [2, 12, 6]   Now add to row 2:     [ -2 + 2, –4 + 12, 6 + 6 ] = [0, 8, 12]   The updated matrix is:     [ 1 6 | 3 ]     [ 0 8 | 12 ] Step 3. Scale row 2 by dividing by 8:   Row 2: [0, 8/8, 12/8] = [0, 1, 3/2]   Matrix now:     [ 1 6 | 3 ]     [ 0 1 | 3/2 ] Step 4. Eliminate y from row 1. Replace row 1 with (row 1 − 6·row 2):   Row 1: [1, 6 – 6·1, 3 – 6·(3/2)]     = [1, 0, 3 – 9]     = [1, 0, -6] The matrix in reduced row–echelon form is:   [ 1 0 | -6 ]   [ 0 1 | 3/2 ] Solution:   x = -6, y = 3/2 ––––––––––––––––––––––––––––––––––––––––––– Final Answers: 47. x = -1, y = 1 48. x = -6, y = 3/2

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve these systems using the Gauss-Jordan elimination method, we first write the augmented matrix for each system and then perform row operations to achieve reduced row echelon form. For problem 47, we start with the system: \[ \begin{aligned} x + 9y &= 8 \\ 2x + 8y &= 6 \end{aligned} \] The augmented matrix is: \[ \begin{bmatrix} 1 & 9 & | & 8 \\ 2 & 8 & | & 6 \end{bmatrix} \] We can multiply the first row by -2 and add it to the second row: \[ \begin{bmatrix} 1 & 9 & | & 8 \\ 0 & -10 & | & -10 \end{bmatrix} \] Next, we can simplify the second row: \[ \begin{bmatrix} 1 & 9 & | & 8 \\ 0 & 1 & | & 1 \end{bmatrix} \] Now, we replace the first row using the second: \[ \begin{bmatrix} 1 & 0 & | & -1 \\ 0 & 1 & | & 1 \end{bmatrix} \] Thus, the solution is \( x = -1 \), \( y = 1 \). For problem 48, we begin with the system: \[ \begin{aligned} \frac{1}{3} x + 2y &= 1 \\ -2x - 4y &= 6 \end{aligned} \] The augmented matrix becomes: \[ \begin{bmatrix} \frac{1}{3} & 2 & | & 1 \\ -2 & -4 & | & 6 \end{bmatrix} \] We can start by multiplying the first row by 3 to eliminate the fraction: \[ \begin{bmatrix} 1 & 6 & | & 3 \\ -2 & -4 & | & 6 \end{bmatrix} \] Adding 2 times the first row to the second: \[ \begin{bmatrix} 1 & 6 & | & 3 \\ 0 & 8 & | & 12 \end{bmatrix} \] We can simplify the second row: \[ \begin{bmatrix} 1 & 6 & | & 3 \\ 0 & 1 & | & \frac{3}{2} \end{bmatrix} \] Replacing the first row using the second row: \[ \begin{bmatrix} 1 & 0 & | & -6 \\ 0 & 1 & | & \frac{3}{2} \end{bmatrix} \] Hence, the solution is \( x = -6 \), \( y = \frac{3}{2} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad