Pregunta
upstudy study bank question image url

Solve and graph on a number line. 16. \( -13<5(1+4 m)-2 m \)

Ask by Grant Daniels. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( m > -1 \). On the number line, plot \( m = -1 \) and shade the region to the right.

Solución

Solve the equation \( -13<5(1+4m)-2m \). Solve the inequality by following steps: - step0: Solve for \(m\): \(-13<5\left(1+4m\right)-2m\) - step1: Swap the sides: \(5\left(1+4m\right)-2m>-13\) - step2: Move the expression to the left side: \(5\left(1+4m\right)-2m-\left(-13\right)>0\) - step3: Remove the parentheses: \(5\left(1+4m\right)-2m+13>0\) - step4: Calculate: \(18+18m>0\) - step5: Move the constant to the right side: \(18m>0-18\) - step6: Remove 0: \(18m>-18\) - step7: Divide both sides: \(\frac{18m}{18}>\frac{-18}{18}\) - step8: Divide the numbers: \(m>-1\) The solution to the inequality \( -13<5(1+4m)-2m \) is \( m > -1 \). To graph this inequality on a number line, we need to plot the point \( m = -1 \) and shade the region to the right of it, indicating that the values of \( m \) greater than -1 satisfy the inequality.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality \( -13 < 5(1 + 4m) - 2m \), first distribute the 5: \[ -13 < 5 + 20m - 2m \] Now combine like terms: \[ -13 < 5 + 18m \] Next, subtract 5 from both sides: \[ -18 < 18m \] Then, divide by 18: \[ -\frac{1}{1} < m \] This simplifies to: \[ m > -1 \] On a number line, you would plot an open circle at -1 (indicating that -1 is not included) with a line extending to the right, showing that m can take on any value greater than -1. Now, let’s make this learning experience even more interesting! To make things more relatable, think of it like finding the perfect seat in a theater. Here, -1 is like the front row, and you can only choose seats that are further back, meaning you're free to sit anywhere behind that front row! And if you're ever stuck on inequalities, remember to check your work. A common mistake is flipping the inequality sign when multiplying or dividing by a negative – but that’s a no-go in this case! Keep those signs straight, and you’re golden!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad