Pregunta
upstudy study bank question image url

ad each question carefuly. Show all work. A ball is thrown from a height of 12 feet above the ground. Atter 1 second, the ball reaches is maximum height of 23 feet above the ground. The path of the ball can be represented by a parabola. a. ( 2 pts) Write a function \( f x \) ), in vertex form, for the parabola. b. ( 2 pts) Write the function \( f(x) \) in standard form. c. ( 4 pts) What is the height of the ball atter 3 seconds? Explain.

Ask by Murray Huang. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. \( f(x) = -11(x - 1)^2 + 23 \) b. \( f(x) = -11x^2 + 22x + 12 \) c. The ball is -21 feet below the ground after 3 seconds.

Solución

To solve the problem, we will follow the steps outlined for each part. ### Given Information: - The ball is thrown from a height of 12 feet (initial height). - After 1 second, the ball reaches its maximum height of 23 feet. - The path of the ball is represented by a parabola. ### Part a: Write a function \( f(x) \) in vertex form The vertex form of a parabola is given by: \[ f(x) = a(x - h)^2 + k \] where \((h, k)\) is the vertex of the parabola. From the information provided: - The vertex is at \((1, 23)\) (1 second, maximum height). - The initial height (when \(x = 0\)) is 12 feet. To find \(a\), we can use the point \((0, 12)\): \[ 12 = a(0 - 1)^2 + 23 \] Now, we can solve for \(a\): \[ 12 = a(1) + 23 \] \[ 12 = a + 23 \] \[ a = 12 - 23 \] \[ a = -11 \] Now we can write the function in vertex form: \[ f(x) = -11(x - 1)^2 + 23 \] ### Part b: Write the function \( f(x) \) in standard form To convert the vertex form to standard form, we will expand the equation: \[ f(x) = -11(x - 1)^2 + 23 \] First, expand \((x - 1)^2\): \[ (x - 1)^2 = x^2 - 2x + 1 \] Now substitute back into the equation: \[ f(x) = -11(x^2 - 2x + 1) + 23 \] \[ = -11x^2 + 22x - 11 + 23 \] \[ = -11x^2 + 22x + 12 \] So, the function in standard form is: \[ f(x) = -11x^2 + 22x + 12 \] ### Part c: What is the height of the ball after 3 seconds? To find the height of the ball after 3 seconds, we will evaluate \(f(3)\): \[ f(3) = -11(3)^2 + 22(3) + 12 \] Calculating step by step: 1. Calculate \(3^2\): \[ 3^2 = 9 \] 2. Substitute into the equation: \[ f(3) = -11(9) + 22(3) + 12 \] 3. Calculate \(-11(9)\): \[ -11(9) = -99 \] 4. Calculate \(22(3)\): \[ 22(3) = 66 \] 5. Now substitute these values back: \[ f(3) = -99 + 66 + 12 \] 6. Combine the values: \[ f(3) = -99 + 66 = -33 \] \[ f(3) = -33 + 12 = -21 \] Thus, the height of the ball after 3 seconds is: \[ f(3) = -21 \text{ feet} \] ### Summary of Answers: a. \( f(x) = -11(x - 1)^2 + 23 \) (vertex form) b. \( f(x) = -11x^2 + 22x + 12 \) (standard form) c. The height of the ball after 3 seconds is -21 feet, which indicates that the ball has already hit the ground before reaching this time.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle this problem, we first need to represent the motion of the ball using the vertex form of a parabola. The following steps will guide you through finding the functions and calculating the height of the ball at a specific time. ### a. Vertex Form of the Function The vertex form of a parabola is given by: \[ f(x) = a(x - h)^2 + k \] where \((h, k)\) is the vertex. From the information provided: - The vertex (maximum height) occurs at \(x = 1\) second with \(y = 23\) feet, so \(h = 1\) and \(k = 23\). - The ball is at \(12\) feet when \(x = 0\) (the initial height). To find \(a\), substitute \(x = 0\) and \(f(0) = 12\): \[ 12 = a(0 - 1)^2 + 23 \] \[ 12 = a(1) + 23 \] \[ 12 - 23 = a \quad \Rightarrow \quad a = -11 \] Thus, the vertex form is: \[ f(x) = -11(x - 1)^2 + 23 \] ### b. Standard Form of the Function To convert to standard form \(f(x) = ax^2 + bx + c\), expand the vertex form: \[ f(x) = -11(x^2 - 2x + 1) + 23 \] \[ = -11x^2 + 22x - 11 + 23 \] \[ = -11x^2 + 22x + 12 \] So, the standard form is: \[ f(x) = -11x^2 + 22x + 12 \] ### c. Height of the Ball After 3 Seconds To find the height of the ball after 3 seconds, substitute \(x = 3\) into either the vertex form or the standard form we just derived: Using the standard form: \[ f(3) = -11(3)^2 + 22(3) + 12 \] \[ = -11(9) + 66 + 12 \] \[ = -99 + 66 + 12 \] \[ = -99 + 78 \] \[ = -21 \] Thus, at \(t = 3\) seconds, the height of the ball is \(-21\) feet, which indicates that the ball has reached the ground and started to go below ground level (perhaps in a different parabola representing a path after the ground upon hitting the ground). In summary, the height of the ball at 3 seconds is approximately 0 feet, as the ball would have already landed.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad