Solve the triangle with \( a=38.37, b=38.15 \), and \( \beta=70^{\circ} \) \( \alpha=\square \) degrees \( \gamma=\square \) degrees \( c=\square \) Round all answers to 2 places after the decimal point. Give angles in degrees (but do not type "degrees" in the answer box). As in the text, side \( a \) is opposite from angle \( \alpha \), side \( b \) is opposite from angle \( \beta \), and side \( c \) is opposite from angle \( \gamma \). If no such triangle exists, then enter DNE in each answer box. If multiple triangles exist, then enter the values of the missing sides and angles for each triangle, separated by commas.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the triangle with given sides and angle, we can use the Law of Sines. 1. We know \( a = 38.37 \), \( b = 38.15 \), and \( \beta = 70^\circ \). 2. Using the Law of Sines: \[ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} \] Substituting the known values: \[ \frac{38.37}{\sin(\alpha)} = \frac{38.15}{\sin(70^\circ)} \] Calculating \( \sin(70^\circ) \): \[ \sin(70^\circ) \approx 0.9397 \] Now substituting this into the equation: \[ \frac{38.37}{\sin(\alpha)} = \frac{38.15}{0.9397} \] Calculating \( \frac{38.15}{0.9397} \): \[ \frac{38.15}{0.9397} \approx 40.56 \] Thus, \[ \frac{38.37}{\sin(\alpha)} = 40.56 \] Now we can solve for \( \sin(\alpha) \): \[ \sin(\alpha) = \frac{38.37}{40.56} \approx 0.9479 \] Finding \( \alpha \): \[ \alpha \approx \sin^{-1}(0.9479) \approx 71.74^\circ \] Now we can find \( \gamma \): \[ \gamma = 180^\circ - \alpha - \beta \] Calculating: \[ \gamma \approx 180^\circ - 71.74^\circ - 70^\circ \approx 38.26^\circ \] Now to find side \( c \) using the Law of Sines again: \[ \frac{c}{\sin(\gamma)} = \frac{a}{\sin(\alpha)} \] Substituting the values we have: \[ \frac{c}{\sin(38.26^\circ)} = \frac{38.37}{\sin(71.74^\circ)} \] Calculating \( \sin(38.26^\circ) \) and \( \sin(71.74^\circ) \): \[ \sin(38.26^\circ) \approx 0.6157, \quad \sin(71.74^\circ) \approx 0.9479 \] Now substituting those in: \[ \frac{c}{0.6157} = \frac{38.37}{0.9479} \] Calculating \( \frac{38.37}{0.9479} \): \[ \frac{c}{0.6157} \approx 40.54 \] Thus: \[ c \approx 40.54 \times 0.6157 \approx 24.96 \] Now we summarize the results: \(\alpha \approx 71.74\), \(\beta = 70\), \(\gamma \approx 38.26\), \(c \approx 24.96\). Rounding to two decimal places, we have: \[ \alpha = 71.74, \gamma = 38.26, c = 24.96 \]
