Pregunta
upstudy study bank question image url

Solve the triangle with \( a=38.37, b=38.15 \), and \( \beta=70^{\circ} \) \( \alpha=\square \) degrees \( \gamma=\square \) degrees \( c=\square \) Round all answers to 2 places after the decimal point. Give angles in degrees (but do not type "degrees" in the answer box). As in the text, side \( a \) is opposite from angle \( \alpha \), side \( b \) is opposite from angle \( \beta \), and side \( c \) is opposite from angle \( \gamma \). If no such triangle exists, then enter DNE in each answer box. If multiple triangles exist, then enter the values of the missing sides and angles for each triangle, separated by commas.

Ask by Grant Long. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

alpha=70.00 gamma=40.00 c=26.00

Solución

Alright, I need to solve this triangle problem where I'm given two sides and one angle. The sides are \( a = 38.37 \) and \( b = 38.15 \), and the angle opposite side \( b \) is \( \beta = 70^\circ \). I need to find the remaining angle \( \alpha \), the third angle \( \gamma \), and the third side \( c \). All answers should be rounded to two decimal places, and angles should be in degrees without the "degrees" label. First, I recall that in any triangle, the sum of the interior angles is \( 180^\circ \). So, \( \alpha + \beta + \gamma = 180^\circ \). Given \( \beta = 70^\circ \), I can express \( \gamma \) as \( \gamma = 180^\circ - \alpha - 70^\circ = 110^\circ - \alpha \). Next, I can use the Law of Sines to find angle \( \alpha \). The Law of Sines states that \( \frac{a}{\sin \alpha} = \frac{b}{\sin \beta} \). Plugging in the known values: \[ \frac{38.37}{\sin \alpha} = \frac{38.15}{\sin 70^\circ} \] First, I'll calculate \( \sin 70^\circ \). Using a calculator, \( \sin 70^\circ \approx 0.9397 \). So, \[ \frac{38.37}{\sin \alpha} = \frac{38.15}{0.9397} \approx 40.67 \] Now, solving for \( \sin \alpha \): \[ \sin \alpha = \frac{38.37}{40.67} \approx 0.943 \] Taking the inverse sine to find \( \alpha \): \[ \alpha \approx \arcsin(0.943) \approx 70.0^\circ \] Wait a second, that seems a bit off. Let me double-check my calculations. Maybe I made a mistake in the Law of Sines application. Let me recalculate: \[ \frac{38.37}{\sin \alpha} = \frac{38.15}{0.9397} \approx 40.67 \] So, \[ \sin \alpha = \frac{38.37}{40.67} \approx 0.943 \] Taking the arcsin: \[ \alpha \approx \arcsin(0.943) \approx 70.0^\circ \] Hmm, it still comes out to approximately \( 70^\circ \). That seems consistent. But let's verify the angles sum up to \( 180^\circ \): \[ \alpha + \beta + \gamma = 70.0^\circ + 70^\circ + \gamma = 180^\circ \] So, \[ \gamma = 180^\circ - 140^\circ = 40.0^\circ \] Now, to find side \( c \), I can use the Law of Sines again: \[ \frac{c}{\sin \gamma} = \frac{b}{\sin \beta} \] Plugging in the known values: \[ \frac{c}{\sin 40.0^\circ} = \frac{38.15}{0.9397} \approx 40.67 \] Calculating \( \sin 40.0^\circ \): \[ \sin 40.0^\circ \approx 0.6428 \] So, \[ c = 40.67 \times 0.6428 \approx 26.00 \] Let me verify these calculations to ensure accuracy. Using a calculator for \( \sin 70^\circ \) and \( \sin 40^\circ \) seems correct, and the arithmetic checks out. Therefore, the triangle can be solved with these values.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the triangle with given sides and angle, we can use the Law of Sines. 1. We know \( a = 38.37 \), \( b = 38.15 \), and \( \beta = 70^\circ \). 2. Using the Law of Sines: \[ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} \] Substituting the known values: \[ \frac{38.37}{\sin(\alpha)} = \frac{38.15}{\sin(70^\circ)} \] Calculating \( \sin(70^\circ) \): \[ \sin(70^\circ) \approx 0.9397 \] Now substituting this into the equation: \[ \frac{38.37}{\sin(\alpha)} = \frac{38.15}{0.9397} \] Calculating \( \frac{38.15}{0.9397} \): \[ \frac{38.15}{0.9397} \approx 40.56 \] Thus, \[ \frac{38.37}{\sin(\alpha)} = 40.56 \] Now we can solve for \( \sin(\alpha) \): \[ \sin(\alpha) = \frac{38.37}{40.56} \approx 0.9479 \] Finding \( \alpha \): \[ \alpha \approx \sin^{-1}(0.9479) \approx 71.74^\circ \] Now we can find \( \gamma \): \[ \gamma = 180^\circ - \alpha - \beta \] Calculating: \[ \gamma \approx 180^\circ - 71.74^\circ - 70^\circ \approx 38.26^\circ \] Now to find side \( c \) using the Law of Sines again: \[ \frac{c}{\sin(\gamma)} = \frac{a}{\sin(\alpha)} \] Substituting the values we have: \[ \frac{c}{\sin(38.26^\circ)} = \frac{38.37}{\sin(71.74^\circ)} \] Calculating \( \sin(38.26^\circ) \) and \( \sin(71.74^\circ) \): \[ \sin(38.26^\circ) \approx 0.6157, \quad \sin(71.74^\circ) \approx 0.9479 \] Now substituting those in: \[ \frac{c}{0.6157} = \frac{38.37}{0.9479} \] Calculating \( \frac{38.37}{0.9479} \): \[ \frac{c}{0.6157} \approx 40.54 \] Thus: \[ c \approx 40.54 \times 0.6157 \approx 24.96 \] Now we summarize the results: \(\alpha \approx 71.74\), \(\beta = 70\), \(\gamma \approx 38.26\), \(c \approx 24.96\). Rounding to two decimal places, we have: \[ \alpha = 71.74, \gamma = 38.26, c = 24.96 \]

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad