Pregunta
upstudy study bank question image url

Find the unit tangent vector \( T(t) \) and find a set of parametric equations for the line tangent to the space curve at point \( P \). \[ r(t)=\langle 6 \cos t, 6 \sin t, 7\rangle, p\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \]

Ask by Greene Sullivan. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The unit tangent vector \( T(t) \) is \( \langle -\sin t, \cos t, 0 \rangle \). The parametric equations for the tangent line at point \( P \left( \frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7 \right) \) are: \[ x = \frac{6}{\sqrt{2}} - \frac{1}{\sqrt{2}}s \\ y = \frac{6}{\sqrt{2}} + \frac{1}{\sqrt{2}}s \\ z = 7 \] where \( s \) is a parameter.

Solución

To solve this problem, we first compute the unit tangent vector T(t) for the curve r(t) and then use it to write the parametric equations for the tangent line at the point P. Step 1. Find the unit tangent vector T(t): The curve is given by:   r(t) = ⟨6 cos t, 6 sin t, 7⟩ Differentiate r(t) with respect to t to obtain r′(t):   r′(t) = ⟨-6 sin t, 6 cos t, 0⟩ Now, find the magnitude of r′(t):   ||r′(t)|| = √[(-6 sin t)² + (6 cos t)² + 0²]       = √[36 sin²t + 36 cos²t]       = √[36 (sin²t + cos²t)]       = √36 = 6 Thus, the unit tangent vector is:   T(t) = r′(t) / ||r′(t)|| = ⟨-6 sin t, 6 cos t, 0⟩ / 6 = ⟨- sin t, cos t, 0⟩ Step 2. Identify the parameter t at point P: The point P is given as:   P = (6/√2, 6/√2, 7) For the first two coordinates, we set:   6 cos t = 6/√2  ⟹ cos t = 1/√2   6 sin t = 6/√2  ⟹ sin t = 1/√2 Both sin t and cos t equal 1/√2, which occurs when:   t = π/4 Step 3. Evaluate T(t) at t = π/4: Substitute t = π/4 into T(t):   T(π/4) = ⟨ - sin(π/4), cos(π/4), 0 ⟩        = ⟨ - (1/√2), 1/√2, 0 ⟩ This is the direction vector of the tangent line at P. Step 4. Write the parametric equations for the tangent line: A line passing through point P with direction vector d = T(π/4) is given by:   x = x₀ + d₁s   y = y₀ + d₂s   z = z₀ + d₃s where s is a parameter, and P = (x₀, y₀, z₀) = (6/√2, 6/√2, 7), and d = ⟨-1/√2, 1/√2, 0⟩. Thus, the parametric equations are:   x = 6/√2 − (1/√2)s   y = 6/√2 + (1/√2)s   z = 7 Final Answer: 1. The unit tangent vector is:   T(t) = ⟨- sin t, cos t, 0⟩ 2. The parametric equations for the tangent line at P are:   x = 6/√2 − (1/√2)s   y = 6/√2 + (1/√2)s   z = 7 These results give the desired unit tangent vector and the tangent line to the curve at the point P.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the unit tangent vector \( T(t) \) and the parametric equations for the line tangent to the space curve at point \( P \), we first need to compute the derivative of the position vector \( r(t) \). 1. **Calculate the derivative \( r'(t) \)**: \[ r(t) = \langle 6 \cos t, 6 \sin t, 7 \rangle \] \[ r'(t) = \langle -6 \sin t, 6 \cos t, 0 \rangle \] 2. **Find \( t \) at point \( P \)**: The coordinates of point \( P \) are \( \left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \). - We can see that: \[ 6 \cos t = \frac{6}{\sqrt{2}} \Rightarrow \cos t = \frac{1}{\sqrt{2}} \Rightarrow t = \frac{\pi}{4} \text{ or } t = \frac{7\pi}{4} \] \[ 6 \sin t = \frac{6}{\sqrt{2}} \Rightarrow \sin t = \frac{1}{\sqrt{2}} \] - The angle \( t = \frac{\pi}{4} \) satisfies both conditions. 3. **Evaluate \( r'(t) \) at \( t = \frac{\pi}{4} \)**: \[ r'\left(\frac{\pi}{4}\right) = \langle -6 \sin\left(\frac{\pi}{4}\right), 6 \cos\left(\frac{\pi}{4}\right), 0 \rangle = \langle -6 \cdot \frac{1}{\sqrt{2}}, 6 \cdot \frac{1}{\sqrt{2}}, 0 \rangle = \langle -\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 0 \rangle \] 4. **Calculate the unit tangent vector \( T(t) \)**: The unit tangent vector is given by normalizing \( r'(t) \): \[ \| r'(\frac{\pi}{4}) \| = \sqrt{\left(-\frac{6}{\sqrt{2}}\right)^2 + \left(\frac{6}{\sqrt{2}}\right)^2 + 0^2} = \sqrt{2 \cdot \left(\frac{6^2}{2}\right)} = 6 \] Therefore, \[ T\left(\frac{\pi}{4}\right) = \frac{1}{6} \langle -\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 0 \rangle = \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \rangle \] 5. **Set up the parametric equations for the tangent line at \( P \)**: The parametric equation for the tangent line at point \( P \) is: \[ L(s) = P + s T\left(\frac{\pi}{4}\right) \] where \( P = \left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}, 7\right) \) and \( T\left(\frac{\pi}{4}\right) = \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \rangle \). Hence: \[ x(s) = \frac{6}{\sqrt{2}} - \frac{s}{\sqrt{2}}, \] \[ y(s) = \frac{6}{\sqrt{2}} + \frac{s}{\sqrt{2}}, \] \[ z(s) = 7. \] In summary, the unit tangent vector at \( P \) is \( T\left(\frac{\pi}{4}\right) = \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \rangle \), and the parametric equations for the tangent line are: \[ x(s) = \frac{6}{\sqrt{2}} - \frac{s}{\sqrt{2}}, \quad y(s)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad