\( \left. \begin{array} { l } { 5.14 ( \frac { 5 x ^ { - 1 } } { 2 } ) ^ { - 1 } \cdot \sqrt { 25 x ^ { 4 } y ^ { - 2 } } } \\ { 5.15 \sqrt { \frac { ( a b ^ { 2 } ) ^ { 3 } } { a ( - 4 c ) ^ { 2 } } } } \\ { 5.16 \frac { ( 3 x ^ { 5 } y ^ { - 3 } ) ^ { 2 } } { - 6 y ^ { 5 } } \times \frac { 2 x ^ { - 4 } } { x ^ { 0 } } } \\ { 5.17 \frac { 2 x y ^ { 2 } } { 3 m } \div \frac { 4 y ^ { 2 } } { 9 x m } } \\ { 5.18 \frac { 3 x } { y ^ { 2 } z ^ { 3 } } \div \frac { 9 x ^ { 2 } } { 2 y z ^ { 4 } } } \\ { 5.19 \frac { ( 2 a c ^ { 2 } ) ^ { 4 } } { 4 a ^ { 4 } } \times \frac { ( a ^ { 2 } b ^ { 3 } ) ^ { 2 } } { ( b ^ { 2 } c ) ^ { 3 } } } \\ { 5.20 \frac { ( 2 a ^ { 2 } b ^ { 3 } ) ^ { 4 } \times ( 8 a b ^ { - 2 } ) ^ { 2 } } { 4 a b ^ { 5 } \times 12 a ^ { 9 } b ^ { 7 } } } \\ { 5.21 \frac { ( 5 x ^ { - 3 } y ) ^ { 2 } } { 4 x y \times ( x ^ { 2 } y ) ^ { 2 } } \div ( \frac { 5 x y } { 2 } ) ^ { 2 } } \end{array} \right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
Let’s take a trip down memory lane! Algebra, particularly the manipulation of variables and expressions, has roots that trace back to ancient civilizations like the Babylonians and Greeks. They laid the groundwork for our modern algebraic symbols and concepts. The term "algebra" actually comes from the Arabic word "al-jabr", which means "reunion of broken parts". Just imagine mathematicians of the past scribbling in the sand, crafting the rules we now follow! Now, let's kick it up a notch with some practical tips for solving algebraic expressions! Remember to check your work by substituting your final answers back into the original equations. This little trick can help you catch any pesky mistakes before you submit your work. Also, pay close attention to negative exponents and fractions – they're common culprits for errors! When in doubt, break down the problem into smaller, manageable parts. Happy solving!
