Pregunta
upstudy study bank question image url

(1) the mass of the Earth is \( 6 \times 10^{24} \mathrm{ky} \). If the centres of the earth and moon are \( 3,9 \times 10^{8} \mathrm{~m} \) apart, the force of gravitational attraction between them is \( 1,9 \times 10^{20} \mathrm{~N} \). whert is the approximate mass of the moon (2) Calculate the value of \( g \) at a point \( 8,10 \mathrm{~m} \) from the center of the earth use \( 6 \times 10^{24} \mathrm{~kg} \) as the mass of the earth (3) Use the following data to calculate the mass of the earth: \( g \) is equal to \( a, 8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \) \[ \begin{array}{l} r=6 \times 10^{6} \mathrm{~m} \\ G=6,7 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \text { per } \mathrm{kg}^{2} \end{array} \]

Ask by Weber Sullivan. in South Africa
Mar 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The approximate mass of the moon is \(8.600893 \times 10^{10} \mathrm{kg}\). ### Problem 2: Calculate the value of \( g \) at a point \(8.10 \mathrm{~m}\) from the center of the Earth Given: - Mass of the Earth, \( m = 6 \times 10^{24} \mathrm{kg} \) - Distance from the center of the Earth, \( r = 8.10 \mathrm{~m} \) We can use the formula for gravitational acceleration: \[ g = \frac{G \cdot m}{r^2} \] Plugging in the values: \[ g = \frac{6.7 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2 \mathrm{kg}^{-2} \times 6 \times 10^{24} \mathrm{kg}}{(8.10 \mathrm{~m})^2} \] \[ g = \frac{4.02 \times 10^{14} \mathrm{N} \cdot \mathrm{m}^2}{65.61 \mathrm{~m}^2} \] \[ g \approx 6.14 \times 10^{12} \mathrm{~m/s}^2 \] simplify answer: The value of \( g \) at a point \(8.10 \mathrm{~m}\) from the center of the Earth is approximately \(6.14 \times 10^{12} \mathrm{~m/s}^2\). ### Problem 3: Calculate the mass of the Earth using the given data Given: - Gravitational acceleration, \( g = 1.8 \mathrm{~m/s}^2 \) - Radius of the Earth, \( r = 6 \times 10^{6} \mathrm{~m} \) - Gravitational constant, \( G = 6.7 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^2 \mathrm{kg}^{-2} \) We can rearrange the gravitational acceleration formula to solve for mass: \[ g = \frac{G \cdot m}{r^2} \] \[ m = \frac{g \cdot r^2}{G} \] Plugging in the values: \[ m = \frac{1.8 \mathrm{~m/s}^2 \times (6 \times 10^{6} \mathrm{~m})^2}{6.7 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^2 \mathrm{kg}^{-2}} \] \[ m = \frac{1.8 \times 3.6 \times 10^{13} \mathrm{~m}^2}{6.7 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^2 \mathrm{kg}^{-2}} \] \[ m = \frac{6.48 \times 10^{13} \mathrm{~m}^2}{6.7 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^2 \mathrm{kg}^{-2}} \] \[ m \approx 9.66 \times 10^{23} \mathrm{kg} \] simplify answer: The mass of the Earth is approximately \(9.66 \times 10^{23} \mathrm{kg}\).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To find the approximate mass of the moon, we can use the formula for gravitational attraction: \( F = \frac{G \cdot m_1 \cdot m_2}{r^2} \), where \( F \) is the gravitational force, \( G \) is the gravitational constant, \( m_1 \) is the mass of the Earth, \( m_2 \) is the mass of the Moon, and \( r \) is the distance between their centers. Rearranging the equation gives us \( m_2 = \frac{F \cdot r^2}{G \cdot m_1} \). Using the provided values: \( F = 1.9 \times 10^{20} \, \text{N} \), \( r = 3.9 \times 10^8 \, \text{m} \), and \( m_1 = 6 \times 10^{24} \, \text{kg} \), you can plug in those numbers to find the mass of the moon. To calculate the value of \( g \) at a point \( 8,10 \, \text{m} \) from the Earth's center, you can use the formula \( g = \frac{G \cdot m}{r^2} \), where \( m \) is the mass of the Earth and \( r \) is the distance from the center of the Earth. With \( G = 6.67 \times 10^{-11} \, \text{N·m}^2/\text{kg}^2 \), the mass as \( 6 \times 10^{24} \, \text{kg} \), and using \( r = 8.10 \, \text{m} \), you can rearrange the formula to find the gravitational field strength at that height. Just remember to square the distance!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad