Pregunta
upstudy study bank question image url

would cause the points to move away from and then back to their original locations. Is he correct? Explain. Iultiple Choice A pilot in a plane sees a lake at an angle of depression of \( 31^{\circ} \). The lane is cruising at 20,000 feet. How far away is the lake from the plane? \( 17,143 \mathrm{ft} \) \( 23,333 \mathrm{ft} \) B \( 10,301 \mathrm{ft} \)

Ask by Ayala King. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The distance from the plane to the lake is approximately \( 33,283.41 \) feet.

Solución

To solve the problem, we need to use the concept of right triangles and trigonometric functions. The angle of depression from the plane to the lake is given as \( 31^{\circ} \), and the height of the plane is \( 20,000 \) feet. ### Step-by-step Solution: 1. **Understanding the Situation**: - The plane is at a height of \( h = 20,000 \) feet. - The angle of depression \( \theta = 31^{\circ} \) is the angle between the horizontal line from the plane and the line of sight to the lake. 2. **Setting Up the Right Triangle**: - The height of the plane forms one side of a right triangle (the opposite side). - The horizontal distance from the plane to the lake forms the adjacent side. - We can use the tangent function, which relates the angle of a right triangle to the opposite and adjacent sides. 3. **Using the Tangent Function**: \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{h}{d} \] where \( d \) is the distance from the plane to the lake. 4. **Rearranging the Formula**: \[ d = \frac{h}{\tan(\theta)} \] 5. **Substituting the Known Values**: \[ d = \frac{20,000}{\tan(31^{\circ})} \] Now, let's calculate \( d \) using the tangent of \( 31^{\circ} \). ### Calculation: I will calculate \( d \) using the formula derived above. Calculate the value by following steps: - step0: Calculate: \(\frac{20000}{\tan\left(31\right)}\) - step1: Calculate the trigonometric value: \(-45280.055876\) It seems there was an error in the calculation. Let's clarify the calculation for \( d \) again. ### Correct Calculation Steps: 1. **Calculate \( \tan(31^{\circ}) \)**: - First, we need to find the value of \( \tan(31^{\circ}) \). 2. **Substituting Back into the Formula**: - Once we have \( \tan(31^{\circ}) \), we can substitute it back into the formula to find \( d \). Let's perform the calculation for \( \tan(31^{\circ}) \) and then find \( d \). Calculate the value by following steps: - step0: Calculate: \(\frac{20000}{\tan\left(31\right)}\) - step1: Calculate the trigonometric value: \(-45280.055876\) Calculate or simplify the expression \( \tan(31) \). Calculate the value by following steps: - step0: Calculate: \(\tan\left(31\right)\) The calculation for \( \tan(31^{\circ}) \) gives us approximately \( 0.6009 \). Now, we can use this value to find the distance \( d \): ### Step 1: Calculate \( d \) Using the formula: \[ d = \frac{20,000}{\tan(31^{\circ})} \] Substituting the value of \( \tan(31^{\circ}) \): \[ d = \frac{20,000}{0.6009} \] ### Step 2: Perform the Calculation Now, let's calculate \( d \). Calculate the value by following steps: - step0: Calculate: \(\frac{20000}{0.6009}\) - step1: Convert the expressions: \(\frac{20000}{\frac{6009}{10000}}\) - step2: Multiply by the reciprocal: \(20000\times \frac{10000}{6009}\) - step3: Multiply: \(\frac{20000\times 10000}{6009}\) - step4: Multiply: \(\frac{200000000}{6009}\) The calculation gives us: \[ d \approx 33,283.41 \text{ feet} \] ### Conclusion: The distance from the plane to the lake is approximately \( 33,283.41 \) feet. Now, looking at the multiple-choice options provided: - \( 17,143 \text{ ft} \) - \( 23,333 \text{ ft} \) - \( 10,301 \text{ ft} \) None of these options match the calculated distance. Therefore, it seems there may be an error in the options provided or in the interpretation of the problem. If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how far the lake is from the plane, we can use some trigonometry! The angle of depression is the angle formed by a horizontal line from the plane to the line of sight to the lake. Given the height (20,000 ft) and the angle (31 degrees), we can apply the tangent function, which relates the opposite side (height to the lake) with the adjacent side (distance to the lake). Using the tangent of the angle: \[ \text{tan(31°)} = \frac{20,000 \text{ ft}}{d} \] Where \(d\) is the distance to the lake. Rearranging, we get: \[ d = \frac{20,000}{\text{tan(31°)}} \] Calculating this gives us approximately 34,000 ft, which we round to one of the choices, thus indicating none of your options are correct. But don't worry; trigonometry helps clarify how distance works in our 3D world! Now, here's a fun fact: The concept of angles and distances isn't just for pilots! Archers and even basketball players use similar principles to judge the angle of their shots. Whether it's scoring a basket or aiming for a bullseye, understanding how angles can affect distance is vital, making math as much a sport as anything else!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad