Pregunta
upstudy study bank question image url

Given \( f(x)=5 \sqrt{x} \) and \( g(x)=5 x \), evaluate the following expressions. \( \begin{array}{llll}\text { (a) }(f \circ g)(4) & \text { (b) }(g \circ f)(2) & \text { (c) }(f \circ f)(1) & \text { (d) }(g \circ g)(0)\end{array} \) \( \begin{array}{l}\text { (a) }(f \circ g)(4)=\square \\ \text { (Type an exact answer, using radicals as needed. Simplify your answer.) }\end{array} \)

Ask by Knight Klein. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( (f \circ g)(4) = 10\sqrt{5} \) (b) \( (g \circ f)(2) = 25\sqrt{2} \) (c) \( (f \circ f)(1) = 5\sqrt{5} \) (d) \( (g \circ g)(0) = 0 \)

Solución

To evaluate the expressions, we will follow the definitions of function composition. The notation \( (f \circ g)(x) \) means \( f(g(x)) \). ### (a) \( (f \circ g)(4) \) 1. First, we need to evaluate \( g(4) \): \[ g(x) = 5x \implies g(4) = 5 \cdot 4 = 20 \] 2. Next, we evaluate \( f(g(4)) = f(20) \): \[ f(x) = 5\sqrt{x} \implies f(20) = 5\sqrt{20} \] 3. Simplifying \( \sqrt{20} \): \[ \sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5} \] Therefore, \[ f(20) = 5 \cdot 2\sqrt{5} = 10\sqrt{5} \] Thus, the answer for (a) is: \[ (f \circ g)(4) = 10\sqrt{5} \] ### (b) \( (g \circ f)(2) \) 1. First, we evaluate \( f(2) \): \[ f(x) = 5\sqrt{x} \implies f(2) = 5\sqrt{2} \] 2. Next, we evaluate \( g(f(2)) = g(5\sqrt{2}) \): \[ g(x) = 5x \implies g(5\sqrt{2}) = 5 \cdot (5\sqrt{2}) = 25\sqrt{2} \] Thus, the answer for (b) is: \[ (g \circ f)(2) = 25\sqrt{2} \] ### (c) \( (f \circ f)(1) \) 1. First, we evaluate \( f(1) \): \[ f(x) = 5\sqrt{x} \implies f(1) = 5\sqrt{1} = 5 \] 2. Next, we evaluate \( f(f(1)) = f(5) \): \[ f(5) = 5\sqrt{5} \] Thus, the answer for (c) is: \[ (f \circ f)(1) = 5\sqrt{5} \] ### (d) \( (g \circ g)(0) \) 1. First, we evaluate \( g(0) \): \[ g(x) = 5x \implies g(0) = 5 \cdot 0 = 0 \] 2. Next, we evaluate \( g(g(0)) = g(0) \): \[ g(0) = 0 \] Thus, the answer for (d) is: \[ (g \circ g)(0) = 0 \] ### Summary of Answers: - (a) \( (f \circ g)(4) = 10\sqrt{5} \) - (b) \( (g \circ f)(2) = 25\sqrt{2} \) - (c) \( (f \circ f)(1) = 5\sqrt{5} \) - (d) \( (g \circ g)(0) = 0 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To evaluate the expressions, we first need to understand how function composition works. Let's go through each of the expressions step by step. (a) \((f \circ g)(4) = f(g(4))\) First, we need to find \(g(4)\): \[ g(4) = 5 \times 4 = 20 \] Now, plug this result into \(f\): \[ f(20) = 5 \sqrt{20} = 5 \sqrt{4 \times 5} = 5 \times 2\sqrt{5} = 10\sqrt{5} \] So, \((f \circ g)(4) = 10\sqrt{5}\). (b) \((g \circ f)(2) = g(f(2))\) First, we find \(f(2)\): \[ f(2) = 5 \sqrt{2} \] Now plug this into \(g\): \[ g(5\sqrt{2}) = 5 \times (5 \sqrt{2}) = 25 \sqrt{2} \] So, \((g \circ f)(2) = 25\sqrt{2}\). (c) \((f \circ f)(1) = f(f(1))\) First, calculate \(f(1)\): \[ f(1) = 5 \sqrt{1} = 5 \] Now plug this result into \(f\): \[ f(5) = 5 \sqrt{5} \] So, \((f \circ f)(1) = 5\sqrt{5}\). (d) \((g \circ g)(0) = g(g(0))\) First, calculate \(g(0)\): \[ g(0) = 5 \times 0 = 0 \] Next, plug this result into \(g\): \[ g(0) = 5 \times 0 = 0 \] So, \((g \circ g)(0) = 0\). Summarizing the results: - (a) \((f \circ g)(4) = 10\sqrt{5}\) - (b) \((g \circ f)(2) = 25\sqrt{2}\) - (c) \((f \circ f)(1) = 5\sqrt{5}\) - (d) \((g \circ g)(0) = 0\)

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad