ılify: \( \begin{array}{lllll}\text { (1) } 2 p^{3} \times 8 p^{2} & \text { (2) } & 6 x^{2} y^{3} \cdot 6 x y^{4} & \text { (3) } & 2^{5} \cdot 2^{3} \cdot 2 \\ \text { (4) } 9^{4} \cdot 9^{8} \cdot 3^{2} & \text { (5) } & 7^{2} \cdot 7^{2} \cdot 7 & \text { (6) } & 7^{2}+7^{2} \\ \text { (7) } 5^{5} \cdot 5^{5} \cdot 5^{5} & \text { (8) } 12 \cdot 12^{12} & \text { (9) } 3^{13} \cdot 3^{12}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To tackle these expressions, tricking them into simpler forms can be quite the adventure! Let's dive into these equations: (1) \( 2 p^{3} \times 8 p^{2} = 16 p^{5} \) (since \( 2 \times 8 = 16 \) and \( p^3 \times p^2 = p^{3+2} = p^5 \)) (2) \( 6 x^{2} y^{3} \cdot 6 x y^{4} = 36 x^{3} y^{7} \) (multiply coefficients \( 6 \times 6 \) and add exponents for \( x \) and \( y \)) (3) \( 2^{5} \cdot 2^{3} \cdot 2 = 2^{9} \) (combine the powers and add 1 for the single \( 2 \)) (4) \( 9^{4} \cdot 9^{8} \cdot 3^{2} = 9^{12} \cdot 3^{2} = 3^{24} \cdot 3^{2} = 3^{26} \) (remember, \( 9 = 3^2 \)) (5) \( 7^{2} \cdot 7^{2} \cdot 7 = 7^{5} \) (just add the exponents) (6) \( 7^{2}+7^{2} = 2 \cdot 7^{2} \) (common factor pattern) (7) \( 5^{5} \cdot 5^{5} \cdot 5^{5} = 5^{15} \) (big power from three \( 5^5 \)'s) (8) \( 12 \cdot 12^{12} = 12^{13} \) (as \( 12 = 12^{1} \), just add) (9) \( 3^{13} \cdot 3^{12} = 3^{25} \) (add the exponents). Combining powers and carefully adding coefficients are the superhero moves of simplification!
