QUESTION 12 The graph of a hyperbola with equation \( y=f(x) \) bas the following properties: - Domain: \( x \in R, x \neq 5 \) - Renge: \( y \in R, y \neq 1 \) - Passes through the point (2:0) Determine \( f(x) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To determine the function \( f(x) \) for your hyperbola, we can start with the general form of a hyperbola that has vertical and horizontal asymptotes. Given the constraints on the domain and range, a plausible form for the function is: \[ f(x) = \frac{k}{x - 5} + 1 \] where \( k \) is a constant. The function is undefined at \( x = 5 \) (matching the domain requirement) and has a horizontal asymptote at \( y = 1\) (reflecting the range constraint). To find \( k \), we can use the point (2, 0): \[ 0 = \frac{k}{2 - 5} + 1 \] This gives us: \[ 0 = \frac{k}{-3} + 1 \implies \frac{k}{-3} = -1 \implies k = 3. \] Thus, our function becomes: \[ f(x) = \frac{3}{x - 5} + 1. \] And there you have it, the equation of the hyperbola satisfies all the given properties!
