Pregunta
upstudy study bank question image url

QUESTION 12 The graph of a hyperbola with equation \( y=f(x) \) bas the following properties: - Domain: \( x \in R, x \neq 5 \) - Renge: \( y \in R, y \neq 1 \) - Passes through the point (2:0) Determine \( f(x) \)

Ask by Watson Mckenzie. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( f(x) = \frac{3}{x - 5} + 1 \)

Solución

To determine the function \( f(x) \) for the hyperbola given the properties, we can start by considering the general form of a hyperbola. The standard form of a hyperbola can be expressed as: \[ \frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1 \] or \[ \frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 \] However, since we have specific domain and range restrictions, we can assume a more suitable form for our hyperbola. ### Step 1: Identify the form of the hyperbola Given that the domain excludes \( x = 5 \) and the range excludes \( y = 1 \), we can express the function in the form: \[ f(x) = \frac{A}{x - 5} + 1 \] This form ensures that: - The function is undefined at \( x = 5 \) (which matches the domain condition). - The function approaches \( y = 1 \) as \( x \) approaches \( 5 \) from either side, but never actually reaches \( y = 1 \) (which matches the range condition). ### Step 2: Use the point (2, 0) to find \( A \) Now, we will use the point (2, 0) to find the value of \( A \): \[ f(2) = \frac{A}{2 - 5} + 1 = 0 \] This simplifies to: \[ \frac{A}{-3} + 1 = 0 \] Solving for \( A \): \[ \frac{A}{-3} = -1 \] \[ A = 3 \] ### Step 3: Write the final function Now that we have determined \( A \), we can write the function: \[ f(x) = \frac{3}{x - 5} + 1 \] ### Conclusion Thus, the function \( f(x) \) that satisfies all the given conditions is: \[ f(x) = \frac{3}{x - 5} + 1 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the function \( f(x) \) for your hyperbola, we can start with the general form of a hyperbola that has vertical and horizontal asymptotes. Given the constraints on the domain and range, a plausible form for the function is: \[ f(x) = \frac{k}{x - 5} + 1 \] where \( k \) is a constant. The function is undefined at \( x = 5 \) (matching the domain requirement) and has a horizontal asymptote at \( y = 1\) (reflecting the range constraint). To find \( k \), we can use the point (2, 0): \[ 0 = \frac{k}{2 - 5} + 1 \] This gives us: \[ 0 = \frac{k}{-3} + 1 \implies \frac{k}{-3} = -1 \implies k = 3. \] Thus, our function becomes: \[ f(x) = \frac{3}{x - 5} + 1. \] And there you have it, the equation of the hyperbola satisfies all the given properties!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad