Pregunta
upstudy study bank question image url

7. \( f(x)=\frac{2}{5} x^{2}-4 x+14 \)

Ask by Norris Munoz. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = \frac{2}{5} x^{2} - 4x + 14 \) has a vertex at \( (5, 4) \), a y-intercept at \( (0, 14) \), and no real x-intercepts.

Solución

To analyze the function \( f(x) = \frac{2}{5} x^{2} - 4x + 14 \), we can explore various features such as its vertex, intercepts, and whether it has any extrema. Let's start by finding the vertex of the quadratic function, which can be calculated using the formula for the x-coordinate of the vertex: \[ x_v = -\frac{b}{2a} \] where \( a = \frac{2}{5} \) and \( b = -4 \). 1. **Calculate the x-coordinate of the vertex:** \[ x_v = -\frac{-4}{2 \cdot \frac{2}{5}} = \frac{4}{\frac{4}{5}} = 5 \] 2. **Calculate the y-coordinate of the vertex by substituting \( x_v \) back into the function:** \[ f(5) = \frac{2}{5}(5)^{2} - 4(5) + 14 \] Now, let's calculate \( f(5) \). 3. **Calculate \( f(5) \):** \[ f(5) = \frac{2}{5}(25) - 20 + 14 = 10 - 20 + 14 = 4 \] Thus, the vertex of the function is at the point \( (5, 4) \). Next, we can find the y-intercept by evaluating \( f(0) \): 4. **Calculate the y-intercept:** \[ f(0) = \frac{2}{5}(0)^{2} - 4(0) + 14 = 14 \] So, the y-intercept is at the point \( (0, 14) \). Now, let's find the x-intercepts by solving the equation \( f(x) = 0 \): 5. **Set the function equal to zero and solve for \( x \):** \[ \frac{2}{5} x^{2} - 4x + 14 = 0 \] To solve this quadratic equation, we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = \frac{2}{5} \), \( b = -4 \), and \( c = 14 \). Now, let's calculate the discriminant \( b^2 - 4ac \): 6. **Calculate the discriminant:** \[ D = (-4)^{2} - 4 \cdot \frac{2}{5} \cdot 14 \] Now, let's calculate \( D \). 7. **Calculate \( D \):** \[ D = 16 - \frac{112}{5} = 16 - 22.4 = -6.4 \] Since the discriminant is negative, this means there are no real x-intercepts. In summary, the features of the function \( f(x) = \frac{2}{5} x^{2} - 4x + 14 \) are: - Vertex: \( (5, 4) \) - Y-intercept: \( (0, 14) \) - No real x-intercepts (the graph does not cross the x-axis). If you need further analysis or specific calculations, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the function you've provided is a quadratic function? Quadratic functions are graphed as parabolas, and their shape is influenced by the coefficients in front of the \(x^2\) term. In this case, the coefficient \(\frac{2}{5}\) indicates that the parabola opens upwards, and its vertex will be the lowest point on the graph. In real-world scenarios, quadratic functions often model situations involving area, projectile motion, or profit maximization. For example, a company may use a quadratic equation to determine the price point that maximizes their profits based on product demand over time. Quadratics can offer valuable insights in various fields, from economics to engineering!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad