Solve for \( y \) in the equation below. Round your answer to the nearest hundredth. Do not round any intermediate computations. \[ 3^{-6 y}=12 \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To solve for \( y \) in the equation \( 3^{-6y} = 12 \), we can take the logarithm of both sides. Using natural logarithms, we have: \[ \ln(3^{-6y}) = \ln(12) \] Using the property of logarithms, we can bring down the exponent: \[ -6y \ln(3) = \ln(12) \] Next, solve for \( y \): \[ y = \frac{\ln(12)}{-6 \ln(3)} \] Now, we can calculate the individual logarithms: 1. \( \ln(12) \approx 2.4849 \) 2. \( \ln(3) \approx 1.0986 \) Now substituting these values in: \[ y = \frac{2.4849}{-6 \times 1.0986} = \frac{2.4849}{-6.5916} \approx -0.3760 \] When rounded to the nearest hundredth: \[ y \approx -0.38 \] Thus, the solution for \( y \) is approximately \( -0.38 \).
