Find the quotient and remainder using long division. \( \frac{x^{3}-41 x+28}{x-6} \) If this is a quiz or exam question, all steps and logic must be shown for full credit. The quotient is The remainder is
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Let’s divide \( x^3 - 41x + 28 \) by \( x - 6 \) using long division. 1. **Setup**: Write \( x^3 - 41x + 28 \) under the division symbol and \( x - 6 \) outside. 2. **First Division**: - Divide the leading term \( x^3 \) by \( x \) to get \( x^2 \). - Multiply \( x^2 \) by \( x - 6 \): \( x^2(x - 6) = x^3 - 6x^2 \). - Subtract the result from \( x^3 - 41x + 28 \): \[ (x^3 - 41x + 28) - (x^3 - 6x^2) = 6x^2 - 41x + 28 \] 3. **Second Division**: - Divide the leading term \( 6x^2 \) by \( x \) to get \( 6x \). - Multiply \( 6x \) by \( x - 6 \): \( 6x(x - 6) = 6x^2 - 36x \). - Subtract the result: \[ (6x^2 - 41x + 28) - (6x^2 - 36x) = -5x + 28 \] 4. **Third Division**: - Divide the leading term \( -5x \) by \( x \) to get \( -5 \). - Multiply \( -5 \) by \( x - 6 \): \( -5(x - 6) = -5x + 30 \). - Subtract the result: \[ (-5x + 28) - (-5x + 30) = -2 \] At this point, the division algorithm gives us: \[ \text{Quotient: } x^2 + 6x - 5 \] \[ \text{Remainder: } -2 \] Final Answer: The quotient is \( x^2 + 6x - 5 \) The remainder is \( -2 \)
