Pregunta
upstudy study bank question image url

Solve the triangle with \( c=15.65, a=13.99 \), and \( \alpha=49^{\circ} \) \( \gamma=\square \) degrees \( \beta=\square \) \( b=\square \) Round all answees to 2 places after the decimal point. Give angles in degrees (but do not type "degrees" in the answer box). As in the text, side \( a \) is opposite from angle \( \alpha \), side \( b \) is opposite from angle \( \beta \), and side \( c \) is opposite from angle \( \gamma \). If no such triangle exists, then enter DNE in each answer box. If multiple triangles exist, then enter the values of the missing sides and angles for each triangle, separated by commas.

Ask by Ray Horton. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \gamma = 57.73, \beta = 73.27, b = 17.71 \]

Solución

To solve the triangle with the given values \( c = 15.65 \), \( a = 13.99 \), and \( \alpha = 49^\circ \), we can use the Law of Sines and the properties of triangles. ### Step 1: Use the Law of Sines The Law of Sines states that: \[ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} \] We can first find angle \( \gamma \) using the Law of Sines: \[ \frac{a}{\sin(\alpha)} = \frac{c}{\sin(\gamma)} \] Rearranging gives: \[ \sin(\gamma) = \frac{c \cdot \sin(\alpha)}{a} \] ### Step 2: Calculate \( \sin(\gamma) \) Substituting the known values: \[ \sin(\gamma) = \frac{15.65 \cdot \sin(49^\circ)}{13.99} \] Now, we will calculate \( \sin(49^\circ) \) and then \( \sin(\gamma) \). ### Step 3: Calculate \( \sin(49^\circ) \) Using a calculator: \[ \sin(49^\circ) \approx 0.7547 \] Now substituting this value into the equation for \( \sin(\gamma) \): \[ \sin(\gamma) = \frac{15.65 \cdot 0.7547}{13.99} \] ### Step 4: Calculate \( \sin(\gamma) \) Now we will perform the calculation: \[ \sin(\gamma) \approx \frac{11.817355}{13.99} \approx 0.8455 \] ### Step 5: Find \( \gamma \) Now we find \( \gamma \): \[ \gamma = \arcsin(0.8455) \] Calculating \( \gamma \): \[ \gamma \approx 57.73^\circ \] ### Step 6: Find \( \beta \) Now we can find \( \beta \) using the fact that the sum of angles in a triangle is \( 180^\circ \): \[ \beta = 180^\circ - \alpha - \gamma \] Substituting the known values: \[ \beta = 180^\circ - 49^\circ - 57.73^\circ \] Calculating \( \beta \): \[ \beta \approx 73.27^\circ \] ### Step 7: Find side \( b \) Now we can find side \( b \) using the Law of Sines again: \[ \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} \] Rearranging gives: \[ b = \frac{c \cdot \sin(\beta)}{\sin(\gamma)} \] Substituting the known values: \[ b = \frac{15.65 \cdot \sin(73.27^\circ)}{0.8455} \] Calculating \( \sin(73.27^\circ) \): \[ \sin(73.27^\circ) \approx 0.9563 \] Now substituting this value into the equation for \( b \): \[ b \approx \frac{15.65 \cdot 0.9563}{0.8455} \] Calculating \( b \): \[ b \approx \frac{14.973195}{0.8455} \approx 17.71 \] ### Final Answers Now we can summarize the results: - \( \gamma \approx 57.73 \) - \( \beta \approx 73.27 \) - \( b \approx 17.71 \) Thus, the final answers rounded to two decimal places are: \[ \gamma = 57.73, \beta = 73.27, b = 17.71 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the triangle, we will first use the given values to find the missing angles and side length using the Law of Sines. 1. **Find angle \( \gamma \)** using the Law of Sines: \[ \frac{a}{\sin(\alpha)} = \frac{c}{\sin(\gamma)} \] Substituting the known values: \[ \frac{13.99}{\sin(49^\circ)} = \frac{15.65}{\sin(\gamma)} \] \[ \sin(\gamma) = \frac{15.65 \cdot \sin(49^\circ)}{13.99} \] Calculating gives: \[ \sin(\gamma) \approx \frac{15.65 \cdot 0.7547}{13.99} \approx 0.8485 \implies \gamma \approx \arcsin(0.8485) \approx 57.73 \] 2. **Find angle \( \beta \)**: \[ \beta = 180^\circ - \alpha - \gamma \] \[ \beta = 180^\circ - 49^\circ - 57.73^\circ \approx 73.27^\circ \] 3. **Find side \( b \)** using the Law of Sines: \[ \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} \] Substituting the known values: \[ b = c \cdot \frac{\sin(\beta)}{\sin(\gamma)} \] \[ b = 15.65 \cdot \frac{\sin(73.27^\circ)}{\sin(57.73^\circ)} \] \[ b \approx 15.65 \cdot \frac{0.9563}{0.8485} \approx 17.56 \] Thus, the complete solution is: \[ \gamma \approx 57.73, \beta \approx 73.27, b \approx 17.56 \] Final Rounded Answers: \[ \gamma = 57.73, \beta = 73.27, b = 17.56 \]

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad