Pregunta
upstudy study bank question image url

ke use of the cosine rule to determine the length of PQ

Ask by Mcdonald Martinez. in South Africa
Feb 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the length of PQ using the cosine rule, use the formula: PQ² = PR² + QR² – 2·PR·QR·cos(angle R) Then, take the square root of the result to get PQ.

Solución

It sounds like you’re being asked to find the length of side PQ in a triangle by applying the cosine rule. (Note: Without a specific diagram or numerical details, I’ll explain the general procedure.) Suppose you have triangle PQR and you wish to find the length of side PQ. The cosine rule (or law of cosines) in any triangle tells you that if you know two sides and the included angle (or three sides), you can find the missing side. In its most common form, the cosine rule is expressed as follows:   For any triangle with sides a, b, and c, where side a is opposite angle A:    a² = b² + c² – 2·b·c·cos A In triangle PQR, let’s assume that:  • Side PQ is opposite a certain angle (say, angle R)  • Sides PR and QR are known Then by the cosine rule we have:   (PQ)² = (PR)² + (QR)² – 2·(PR)·(QR)·cos(angle R) To solve for PQ:  1. Plug in the known values for PR, QR, and the measure of angle R.  2. Compute the right-hand side.  3. Finally, take the square root of the result to get PQ:   PQ = √[(PR)² + (QR)² – 2·(PR)·(QR)·cos(angle R)] If instead you know a different angle (for example, angle Q), make sure you identify the angle that is opposite the side you want to find. For instance, if angle Q is opposite side PR, then you’d write the cosine rule accordingly for that side. The key point is to match the unknown side with the angle directly opposite it. In summary, the steps are:  • Identify the side you need (PQ) and the angle opposite it.  • Use the cosine rule:   PQ² = (side adjacent 1)² + (side adjacent 2)² – 2·(side adjacent 1)·(side adjacent 2)·cos(opposite angle)  • Solve for PQ by taking the square root of PQ². Once you have the numerical values, substitute them into the formula and calculate PQ.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the cosine rule has historical roots that date back to ancient civilizations? Both ancient Greek mathematicians and Indian astronomers used early forms of this rule to solve problems related to triangles, laying down a foundational concept that we still use in modern mathematics. Its versatility extends beyond basic geometry, influencing fields such as astronomy and architecture throughout history! When using the cosine rule, one common mistake people make is confusing the angle they should use. It's crucial to ensure that the angle corresponds correctly to the sides in question. Make sure to correctly identify the angle opposite the side you're calculating. Also, double-check your calculator is in the right mode—degrees or radians—before computing!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad