Pregunta
upstudy study bank question image url

4)) Both of these functions grow as \( x \) gets larger and larger. Which function eventually exceeds the other? \( f(x)=15 x+9 \) \( g(x)=3(4)^{x} \) Submit

Ask by Wells Hilton. in the United States
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

g(x) eventually exceeds f(x).

Solución

We have two functions:   f(x) = 15x + 9        (Linear)   g(x) = 3(4)^x        (Exponential) Exponential functions grow much more quickly than linear functions. Although f(x) might be larger for some small values of x, as x increases, g(x) eventually exceeds f(x) and remains larger thereafter. For example, at x = 0:   f(0) = 15(0) + 9 = 9   g(0) = 3(4)^0 = 3 Here, f(0) > g(0). At x = 1:   f(1) = 15(1) + 9 = 24   g(1) = 3(4)^1 = 12 Still, f(1) > g(1). At x = 2:   f(2) = 15(2) + 9 = 39   g(2) = 3(4)^2 = 3(16) = 48 Now f(2) < g(2). From this, you can see that although f(x) starts out larger, g(x) eventually exceeds it and continues to grow dramatically faster. Answer: g(x) eventually exceeds f(x).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

As \( x \) increases, the function \( g(x) = 3(4)^x \) grows exponentially due to the base of 4 raised to the power of \( x \). This means that while \( f(x) = 15x + 9 \) grows at a linear rate, \( g(x) \) will eventually outpace it significantly since exponential growth is much faster than linear growth. For a practical perspective, if you were to plot these two functions, you'd see that \( f(x) \) starts off at a certain level but as you move right on the graph, \( g(x) \) will start to shoot up steeply. Specifically, \( g(x) \) will start to exceed \( f(x) \) when \( x \) reaches about 3 or so, demonstrating the classic battle between linear and exponential functions!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad