\( \left. \begin{array} { l } { \sin ^ { 2 } x + 2 \sin x \cos x - 3 \cos ^ { 2 } x = 0 } \\ { [ - 360 ; 360 ] } \end{array} \right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve the equation \( \sin^2 x + 2 \sin x \cos x - 3 \cos^2 x = 0 \), we can rewrite \( \sin^2 x \) in terms of \( \cos^2 x \) using the identity \( \sin^2 x = 1 - \cos^2 x \). This gives us: \[ (1 - \cos^2 x) + 2 \sin x \cos x - 3 \cos^2 x = 0 \] This simplifies to: \[ 1 - 4 \cos^2 x + 2 \sin x \cos x = 0 \] Next, swap \( \sin x \) with \( \sqrt{1 - \cos^2 x} \) and multiply through by \( \cos^2 x \) to facilitate factoring. However, let's consider \( \sin x = 2t \) and \( \cos x = t \). The equation then takes a quadratic form. The solutions for \( x \) will fall into various ranges, specifically within \([-360, 360]\). Exploring various angles, the possible values will emerge involving \( \theta \) related identities leading to a sine wave. Finally, be sure to check solutions back in the original equation to confirm they satisfy it, specifically checking the quadratic yield and simplifications carefully. As a final note: Set your calculator to radians or degrees based on how you're handling the sine and cosine calculations!
