Pregunta
upstudy study bank question image url

7/13 Which of the following statements are true about the function below? Select all that apply. \[ f(x)=0.5(2)^{x}-1 \] Select all correct options The \( y \)-intercept is \( (0,0.5) \) The function represents exponential growth The horizontal asymptote is \( \mathrm{y}=-1 \) The domain is all real numbers \( (-\infty, \infty) \) The range is all real numbers \( (-\infty, \infty) \)

Ask by Bowen Conner. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function represents exponential growth, the horizontal asymptote is \( y = -1 \), and the domain is all real numbers \( (-\infty, \infty) \).

Solución

To analyze the function \( f(x) = 0.5(2)^{x} - 1 \), we will evaluate each statement one by one. 1. **The \( y \)-intercept is \( (0,0.5) \)**: - To find the \( y \)-intercept, we evaluate \( f(0) \): \[ f(0) = 0.5(2)^{0} - 1 = 0.5(1) - 1 = 0.5 - 1 = -0.5 \] - Therefore, the \( y \)-intercept is \( (0, -0.5) \), not \( (0, 0.5) \). This statement is **false**. 2. **The function represents exponential growth**: - The function has the form \( a(b)^{x} + c \) where \( a = 0.5 \), \( b = 2 \) (which is greater than 1), and \( c = -1 \). Since \( b > 1 \), the function indeed represents exponential growth. This statement is **true**. 3. **The horizontal asymptote is \( y = -1 \)**: - As \( x \) approaches infinity, \( (2)^{x} \) grows without bound, and thus \( f(x) \) approaches \( \infty \). As \( x \) approaches negative infinity, \( (2)^{x} \) approaches \( 0 \): \[ \lim_{x \to -\infty} f(x) = 0.5(0) - 1 = -1 \] - Therefore, the horizontal asymptote is indeed \( y = -1 \). This statement is **true**. 4. **The domain is all real numbers \( (-\infty, \infty) \)**: - The function \( f(x) = 0.5(2)^{x} - 1 \) is defined for all real numbers \( x \). Thus, the domain is indeed all real numbers. This statement is **true**. 5. **The range is all real numbers \( (-\infty, \infty) \)**: - The function approaches \( -1 \) as \( x \) approaches negative infinity and grows without bound as \( x \) approaches positive infinity. Therefore, the range is \( (-1, \infty) \), not all real numbers. This statement is **false**. ### Summary of Statements: - The \( y \)-intercept is \( (0,0.5) \): **False** - The function represents exponential growth: **True** - The horizontal asymptote is \( y = -1 \): **True** - The domain is all real numbers \( (-\infty, \infty) \): **True** - The range is all real numbers \( (-\infty, \infty) \): **False** ### Correct Options: - The function represents exponential growth - The horizontal asymptote is \( y = -1 \) - The domain is all real numbers \( (-\infty, \infty) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( f(x) = 0.5(2)^x - 1 \) has a y-intercept at \( (0, 0.5) \), which is incorrect. When you substitute \( x = 0 \), you find that \( f(0) = 0.5(1) - 1 = -0.5 \), giving the intercept as \( (0, -0.5) \). The function does represent exponential growth since the base of \( 2 \) is greater than \( 1 \). The horizontal asymptote is indeed \( y = -1 \) because as \( x \) approaches infinity, \( f(x) \) approaches this line. The domain of the function is all real numbers \( (-\infty, \infty) \), which is correct. However, the range of the function is \( (-1, \infty) \), not all real numbers, since \( f(x) \) will never actually reach -1.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad