Pregunta
upstudy study bank question image url

Solve \( 13 \cos \theta-8=0 \) for \( 0^{\circ} \leq \theta<180^{\circ} \). Give your answer correct to one decimal place.

Ask by Young Weber. in Singapore
Feb 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

θ ≈ 52.0°

Solución

We start with the equation:   13 cos θ – 8 = 0 Step 1. Isolate cos θ:   13 cos θ = 8   cos θ = 8/13 Step 2. Find θ in the interval 0° ≤ θ < 180°. Since cos θ = 8/13 is positive, and cosine is positive in the first quadrant, we take:   θ = cos⁻¹(8/13) Step 3. Calculate the inverse cosine (using a calculator):   θ ≈ cos⁻¹(0.6154) ≈ 52.0° (to one decimal place) Thus, the solution is:   θ ≈ 52.0°

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \( 13 \cos \theta - 8 = 0 \), we start by isolating \( \cos \theta \): \[ 13 \cos \theta = 8 \] \[ \cos \theta = \frac{8}{13} \] Now, we need to find \( \theta \) such that \( 0^{\circ} \leq \theta < 180^{\circ} \). Since \( \cos \theta \) is positive, we will have two possible angles in this range: one in the first quadrant and one in the second quadrant. 1. For the first quadrant: \[ \theta_1 = \cos^{-1}\left(\frac{8}{13}\right) \] Using a calculator: \[ \theta_1 \approx 43.6^{\circ} \] 2. For the second quadrant: \[ \theta_2 = 180^{\circ} - \theta_1 \] Calculating this gives: \[ \theta_2 \approx 180^{\circ} - 43.6^{\circ} \approx 136.4^{\circ} \] Therefore, the two solutions to \( 13 \cos \theta - 8 = 0 \) in the range \( 0^{\circ} \leq \theta < 180^{\circ} \) are approximately: \[ \theta \approx 43.6^{\circ}, \quad 136.4^{\circ} \] So, the final answer, rounded to one decimal place, is: \[ \theta \approx 43.6^{\circ}, 136.4^{\circ} \]

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad