Pregunta
upstudy study bank question image url

2. Calculate the value(s) of \( k \) for which \( -x^{2}+6 x-k \) has real roots. Answer: \( k \) Select \( v \)

Ask by Garrett Cross. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The values of \( k \) for which \( -x^{2} + 6x - k \) has real roots are all real numbers less than or equal to 9.

Solución

To determine the values of \( k \) for which the quadratic equation \( -x^{2} + 6x - k \) has real roots, we need to analyze the discriminant of the quadratic equation. The general form of a quadratic equation is given by: \[ ax^2 + bx + c = 0 \] In our case, we have: - \( a = -1 \) - \( b = 6 \) - \( c = -k \) The discriminant \( D \) of a quadratic equation is given by: \[ D = b^2 - 4ac \] For the quadratic to have real roots, the discriminant must be non-negative: \[ D \geq 0 \] Now, let's calculate the discriminant for our equation: \[ D = 6^2 - 4(-1)(-k) \] This simplifies to: \[ D = 36 - 4k \] Now, we set the discriminant greater than or equal to zero: \[ 36 - 4k \geq 0 \] Next, we will solve this inequality for \( k \): \[ 36 \geq 4k \] Dividing both sides by 4: \[ 9 \geq k \] or \[ k \leq 9 \] Thus, the values of \( k \) for which the quadratic \( -x^{2} + 6x - k \) has real roots are: \[ k \leq 9 \] In conclusion, the answer is: \[ k \leq 9 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the values of \( k \) for which the quadratic equation \( -x^{2}+6x-k \) has real roots, we can utilize the discriminant from the quadratic formula, which states that for an equation of the form \( ax^2 + bx + c = 0 \), the discriminant \( D = b^2 - 4ac \) must be greater than or equal to zero. In this case, \( a = -1 \), \( b = 6 \), and \( c = -k \). The discriminant is given by: \[ D = 6^2 - 4(-1)(-k) = 36 - 4k \] To have real roots, set the discriminant \( D \geq 0 \): \[ 36 - 4k \geq 0 \\ 4k \leq 36 \\ k \leq 9 \] Therefore, \( k \) must be less than or equal to 9 for the quadratic to have real roots. To ensure that the quadratic is usable in practical situations, always remember that the vertex can also determine the nature of the roots based on whether it lies above or below the x-axis. The vertex of this equation is pivotal: it gives a critical point that can help visualize whether roots exist in given intervals based on where it sits in relation to zero. So, check vertex location while using your discriminant findings!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad