Pregunta
upstudy study bank question image url

Solve the following system of inequalities graphically on the set of axes below. State the coordinates of a point in the solution set. \[ y \geq-x+8 \] \[ y \leq \frac{3}{2} x-7 \]

Ask by Greene Conner. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A point in the solution set is (6, 2).

Solución

To solve the system of inequalities graphically, we will follow these steps: 1. **Graph the boundary lines** of each inequality. 2. **Determine the regions** that satisfy each inequality. 3. **Identify the intersection** of the regions to find the solution set. 4. **State the coordinates** of a point in the solution set. ### Step 1: Graph the Boundary Lines 1. **For the first inequality** \( y \geq -x + 8 \): - The boundary line is \( y = -x + 8 \). - To graph this line, we can find two points: - When \( x = 0 \): \( y = 8 \) (point (0, 8)) - When \( y = 0 \): \( 0 = -x + 8 \) → \( x = 8 \) (point (8, 0)) - This line has a negative slope and will be solid since the inequality is "greater than or equal to". 2. **For the second inequality** \( y \leq \frac{3}{2} x - 7 \): - The boundary line is \( y = \frac{3}{2} x - 7 \). - To graph this line, we can find two points: - When \( x = 0 \): \( y = -7 \) (point (0, -7)) - When \( y = 0 \): \( 0 = \frac{3}{2} x - 7 \) → \( \frac{3}{2} x = 7 \) → \( x = \frac{14}{3} \approx 4.67 \) (point \((\frac{14}{3}, 0)\)) - This line has a positive slope and will also be solid since the inequality is "less than or equal to". ### Step 2: Determine the Regions - For \( y \geq -x + 8 \), the region above the line is included. - For \( y \leq \frac{3}{2} x - 7 \), the region below the line is included. ### Step 3: Identify the Intersection The solution set is where the shaded regions of both inequalities overlap. ### Step 4: State the Coordinates of a Point in the Solution Set To find a point in the solution set, we can check the intersection of the two lines: 1. Set the equations equal to each other to find the intersection point: \[ -x + 8 = \frac{3}{2} x - 7 \] 2. Solve for \( x \): \[ 8 + 7 = \frac{3}{2} x + x \] \[ 15 = \frac{5}{2} x \] \[ x = \frac{15 \cdot 2}{5} = 6 \] 3. Substitute \( x = 6 \) back into one of the equations to find \( y \): \[ y = -6 + 8 = 2 \] Thus, the intersection point is \( (6, 2) \). ### Conclusion The coordinates of a point in the solution set are \( (6, 2) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the system of inequalities graphically, you first need to plot the boundary lines represented by the equations \( y = -x + 8 \) and \( y = \frac{3}{2}x - 7 \). 1. For \( y = -x + 8 \): - Identify the y-intercept (where \( x = 0 \)), which is (0, 8). - Identify the x-intercept (where \( y = 0 \)), solving \( 0 = -x + 8 \) leads to \( x = 8 \). So the point (8, 0) is also on the line. - Draw a dashed line since it is a "greater than or equal to" inequality. 2. For \( y = \frac{3}{2}x - 7 \): - Identify the y-intercept (where \( x = 0 \)), which is (0, -7). - Identify the x-intercept (setting \( y = 0 \)): \( 0 = \frac{3}{2}x - 7 \) leads to \( x = \frac{14}{3} \). - Draw a dashed line because it is a "less than or equal to" inequality. After plotting both lines, shade the regions according to the inequalities: - Shade above the line \( y = -x + 8 \) for \( y \geq -x + 8 \). - Shade below the line \( y = \frac{3}{2}x - 7 \) for \( y \leq \frac{3}{2}x - 7 \). The solution set is where the shaded regions intersect. A possible point in the solution set is (0, 0), which satisfies both inequalities: 1. \( 0 \geq -0 + 8 \) (false, but we’ll check others) 2. \( 0 \leq \frac{3}{2}(0) - 7\) (true) Instead, a valid point is (8, -1): 1. \( -1 \geq -8 + 8\) (true) 2. \( -1 \leq \frac{3}{2}(8) - 7\) (true). Thus, an effective point in the solution set is (8, -1). Happy graphing!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad