Pregunta
upstudy study bank question image url

25. \( \frac{-6 a^{3} b^{10} c}{12 a^{8} b^{4} c} \)

Ask by Zimmerman Pope. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified form is \( -\frac{b^{6}}{2a^{5}} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To simplify the expression \( \frac{-6 a^{3} b^{10} c}{12 a^{8} b^{4} c} \), start by simplifying the coefficients and canceling out like terms. The coefficient \(-6\) divided by \(12\) gives \(-\frac{1}{2}\). For the \(a\) terms, \(a^{3}\) in the numerator and \(a^{8}\) in the denominator simplifies to \(a^{-5}\) or \(\frac{1}{a^{5}}\). The \(b\) terms simplify as \(b^{10}\) divided by \(b^{4}\) equals \(b^{6}\). The \(c\) terms cancel each other out since they are the same. Putting it all together, the simplified expression is \(-\frac{1}{2} \times \frac{b^{6}}{a^{5}}\), or \(-\frac{b^{6}}{2a^{5}}\).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad