Pregunta
upstudy study bank question image url

Section 7.3 Practice: Prove each Identity. 1) \( \sec (x)-\sin (x) \tan (x)=\cos (x) \)

Ask by Wright Lynch. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To prove the identity \( \sec(x) - \sin(x) \tan(x) = \cos(x) \), follow these steps: 1. **Rewrite Trigonometric Functions:** - \( \sec(x) = \frac{1}{\cos(x)} \) - \( \tan(x) = \frac{\sin(x)}{\cos(x)} \) 2. **Substitute into the Identity:** \[ \frac{1}{\cos(x)} - \sin(x) \cdot \frac{\sin(x)}{\cos(x)} = \frac{1 - \sin^2(x)}{\cos(x)} \] 3. **Apply Pythagorean Identity:** \[ 1 - \sin^2(x) = \cos^2(x) \] So, \[ \frac{\cos^2(x)}{\cos(x)} = \cos(x) \] 4. **Simplify:** \[ \cos(x) \] Thus, the identity is proven.

Solución

To prove the identity   sec(x) – sin(x)·tan(x) = cos(x), start by rewriting the trigonometric functions in terms of sine and cosine: • sec(x) = 1/cos(x) • tan(x) = sin(x)/cos(x) Now substitute these into the left-hand side of the identity:   sec(x) – sin(x)·tan(x)     = 1/cos(x) – sin(x)·(sin(x)/cos(x))     = 1/cos(x) – sin²(x)/cos(x) Since both terms have the common denominator cos(x), combine them:   = [1 – sin²(x)]/cos(x) Recall the Pythagorean identity:   sin²(x) + cos²(x) = 1  or  1 – sin²(x) = cos²(x) Substitute cos²(x) for 1 – sin²(x):   = cos²(x)/cos(x) Simplify by canceling one factor of cos(x):   = cos(x) Thus, we have shown:   sec(x) – sin(x)·tan(x) = cos(x) This completes the proof of the identity.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To prove the identity \( \sec (x) - \sin (x) \tan (x) = \cos (x) \), we can start by rewriting the left side using their definitions. We know that \( \sec(x) = \frac{1}{\cos(x)} \) and \( \tan(x) = \frac{\sin(x)}{\cos(x)} \). Therefore, the expression becomes: \[ \frac{1}{\cos(x)} - \sin(x) \cdot \frac{\sin(x)}{\cos(x)} = \frac{1}{\cos(x)} - \frac{\sin^2(x)}{\cos(x)} \] Combining the two fractions over a common denominator, we get: \[ \frac{1 - \sin^2(x)}{\cos(x)} \] Using the Pythagorean identity \( 1 - \sin^2(x) = \cos^2(x) \), we can substitute to simplify: \[ \frac{\cos^2(x)}{\cos(x)} = \cos(x) \] Thus, we’ve proven \( \sec(x) - \sin(x) \tan(x) = \cos(x) \). Now, let's remember that this identity is equal to a specific form of the relationship between sine, cosine, and secant functions, showcasing how they can transform into each other through simple manipulations. Understanding trigonometric identities can help you identify them in complex expressions, making problem-solving easier! When dealing with trigonometric functions, it’s crucial to keep fundamental identities handy for quick simplifications or proofs. Common mistakes often stem from misapplying the identities or neglecting to recognize equivalent forms. Always double-check your steps for clarity!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad