(b) \( 4 ; 11 ; 18,25 \ldots \) is a given sequence: (1) Determine the \( 45^{\circ} \) term. (2) Which term of the sequence is 627?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve the given sequence \( 4 ; 11 ; 18,25 \ldots \), we need to first find a pattern. Looking at the differences between terms: - \( 11 - 4 = 7 \) - \( 18 - 11 = 7 \) - \( 25 - 18 = 7 \) This shows that each term increases by 7. The sequence can be represented by the formula: \( a_n = 4 + 7(n - 1) \) or simplified: \( a_n = 7n - 3 \). (1) To find the \( 45^{th} \) term: \( a_{45} = 7(45) - 3 = 315 - 3 = 312 \). (2) To determine which term is 627, we set the \( n \)th term equal to 627: \( 7n - 3 = 627 \) \( 7n = 630 \) \( n = 90 \). Thus, \( 627 \) is the \( 90^{th} \) term of the sequence.
