Dengan menggunakan pendekatan \( \ln 2 \approx 0.693 \) dan \( \ln 3 \approx 1.099 \) dan property logaritma natural ya sudah dibahas sebelumnya, hitunglah nilai dari logaritma natural berikut a) \( \ln \sqrt{2} \) b) \( \ln 1.5 \) c) \( \ln \left(\frac{1}{36}\right) \) d) \( \ln 48 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
Mari kita selesaikan satu per satu! a) Untuk \( \ln \sqrt{2} \): \[ \ln \sqrt{2} = \ln (2^{1/2}) = \frac{1}{2} \ln 2 \approx \frac{1}{2} \times 0.693 \approx 0.3465 \] b) Untuk \( \ln 1.5 \): \[ \ln 1.5 = \ln \left(\frac{3}{2}\right) = \ln 3 - \ln 2 \approx 1.099 - 0.693 \approx 0.406 \] c) Untuk \( \ln \left(\frac{1}{36}\right) \): \[ \ln \left(\frac{1}{36}\right) = \ln \left(36^{-1}\right) = -\ln 36 = -\ln (6^2) = -2 \ln 6 \] Kita tahu \( \ln 6 = \ln (2 \times 3) = \ln 2 + \ln 3 \approx 0.693 + 1.099 = 1.792 \), maka: \[ \ln 36 \approx 2 \times 1.792 = 3.584 \] Sehingga, \[ \ln \left(\frac{1}{36}\right) \approx -3.584 \] d) Untuk \( \ln 48 \): \[ \ln 48 = \ln (16 \times 3) = \ln (2^4 \times 3) = \ln (2^4) + \ln 3 = 4 \ln 2 + \ln 3 \approx 4 \times 0.693 + 1.099 = 2.772 + 1.099 \approx 3.871 \] Jadi, hasil akhir kita adalah: - \( \ln \sqrt{2} \approx 0.3465 \) - \( \ln 1.5 \approx 0.406 \) - \( \ln \left(\frac{1}{36}\right) \approx -3.584 \) - \( \ln 48 \approx 3.871 \)
