Pregunta
upstudy study bank question image url

Grapht \( \left\{\begin{array}{l}y<4 x+1 \\ y>-x+2\end{array}\right. \)

Ask by Turnbull Ellis. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the system \( y < 4x + 1 \) and \( y > -x + 2 \), follow these steps: 1. **Draw the boundary lines**: - \( y = 4x + 1 \) (dashed line) - \( y = -x + 2 \) (dashed line) 2. **Find the intersection point**: - Solve \( 4x + 1 = -x + 2 \) to get \( x = \frac{1}{5} \) and \( y = \frac{9}{5} \). 3. **Determine the shading**: - For \( y < 4x + 1 \), shade below the line. - For \( y > -x + 2 \), shade above the line. 4. **Identify the solution region**: - The overlapping shaded area represents all points that satisfy both inequalities. This graph shows all points (x, y) that meet both \( y < 4x + 1 \) and \( y > -x + 2 \).

Solución

We wish to graph the system   y < 4x + 1   y > –x + 2 follow these steps: 1. Find the boundary lines:   • Line 1: y = 4x + 1   • Line 2: y = –x + 2   Note: Since the inequalities are strict (< and >), these lines themselves are not part of the solution region. When you draw them, use dashed lines. 2. Find the intersection point of the two lines:   Set 4x + 1 = –x + 2    4x + x = 2 – 1    5x = 1    x = 1/5   Then substitute back to find y:    y = 4(1/5) + 1 = 4/5 + 1 = 9/5   The lines intersect at (1/5, 9/5). 3. Decide which side of each line to shade.   • For y < 4x + 1:    Pick a test point not on the line (0,0) is convenient.    Test: 0 < 4(0) + 1 ⟹ 0 < 1, which is true.    Thus, the region containing (0,0) is the solution for y < 4x + 1.   • For y > –x + 2:    Again, test (0,0).    Test: 0 > –(0) + 2 ⟹ 0 > 2, which is false.    So pick another test point; try (0,3).    Test: 3 > –(0) + 2 ⟹ 3 > 2, which is true.    Thus, the region containing (0,3) is the solution for y > –x + 2. 4. Shade the common (overlapping) region:   • Shade below the dashed line y = 4x + 1   • Shade above the dashed line y = –x + 2   The solution to the system is the area where these two shaded regions overlap. 5. Sketching:   • Draw the two dashed boundary lines.   • Mark their intersection at (1/5, 9/5).   • Shade the region that lies below y = 4x + 1 and above y = –x + 2. This overlapping area is your final answer. This graph represents all points (x, y) that satisfy y < 4x + 1 and y > –x + 2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the inequalities \( y < 4x + 1 \) and \( y > -x + 2 \), start by sketching the lines of the equations for \( y = 4x + 1 \) and \( y = -x + 2 \). The line \( y = 4x + 1 \) has a slope of 4, which means it rises steeply. Use a dashed line for this equation to indicate that points on the line are not included in the solution. Next, graph \( y = -x + 2 \), which has a slope of -1, making it a downward sloping line. This line should also be dashed, since the points on this line are not part of the solution for this inequality. After plotting both lines, shade the area below the line \( y = 4x + 1 \) and above the line \( y = -x + 2 \). The intersection of these shaded regions is your solution, representing all points that satisfy both inequalities.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad