Responder
The solutions are:
\[
\left(-\frac{6\sqrt{7}}{7}, -\frac{2\sqrt{19}}{\sqrt{7}}\right), \left(-\frac{6\sqrt{7}}{7}, \frac{2\sqrt{19}}{\sqrt{7}}\right), \left(\frac{6\sqrt{7}}{7}, -\frac{2\sqrt{19}}{\sqrt{7}}\right), \left(\frac{6\sqrt{7}}{7}, \frac{2\sqrt{19}}{\sqrt{7}}\right)
\]
Solución
Solve the equation by following steps:
- step0: Solve for \(y\):
\(y^{2}=16-x^{2}\)
- step1: Simplify the expression:
\(y=\pm \sqrt{16-x^{2}}\)
- step2: Separate into possible cases:
\(\begin{align}&y=\sqrt{16-x^{2}}\\&y=-\sqrt{16-x^{2}}\end{align}\)
Solve the system of equations \( x^{2}+y^{2}=16; \frac{y^{2}}{4}-\frac{x^{2}}{3}=1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x^{2}+y^{2}=16\\\frac{y^{2}}{4}-\frac{x^{2}}{3}=1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\sqrt{16-y^{2}}\cup x=-\sqrt{16-y^{2}}\\\frac{y^{2}}{4}-\frac{x^{2}}{3}=1\end{array}\right.\)
- step2: Evaluate:
\(\left\{ \begin{array}{l}x=\sqrt{16-y^{2}}\\\frac{y^{2}}{4}-\frac{x^{2}}{3}=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-\sqrt{16-y^{2}}\\\frac{y^{2}}{4}-\frac{x^{2}}{3}=1\end{array}\right.\)
- step3: Calculate:
\(\left\{ \begin{array}{l}x=\frac{2\sqrt{63}}{7}\\y=-\frac{2\sqrt{133}}{7}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2\sqrt{63}}{7}\\y=\frac{2\sqrt{133}}{7}\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{2\sqrt{63}}{7}\\y=-\frac{2\sqrt{133}}{7}\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{2\sqrt{63}}{7}\\y=\frac{2\sqrt{133}}{7}\end{array}\right.\)
- step4: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-\frac{2\sqrt{63}}{7}\\y=-\frac{2\sqrt{133}}{7}\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{2\sqrt{63}}{7}\\y=\frac{2\sqrt{133}}{7}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2\sqrt{63}}{7}\\y=-\frac{2\sqrt{133}}{7}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2\sqrt{63}}{7}\\y=\frac{2\sqrt{133}}{7}\end{array}\right.\)
- step5: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{2\sqrt{63}}{7}\\y=-\frac{2\sqrt{133}}{7}\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{2\sqrt{63}}{7}\\y=\frac{2\sqrt{133}}{7}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2\sqrt{63}}{7}\\y=-\frac{2\sqrt{133}}{7}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2\sqrt{63}}{7}\\y=\frac{2\sqrt{133}}{7}\end{array}\right.\)
- step6: Rewrite:
\(\left(x,y\right) = \left(-\frac{2\sqrt{63}}{7},-\frac{2\sqrt{133}}{7}\right)\cup \left(x,y\right) = \left(-\frac{2\sqrt{63}}{7},\frac{2\sqrt{133}}{7}\right)\cup \left(x,y\right) = \left(\frac{2\sqrt{63}}{7},-\frac{2\sqrt{133}}{7}\right)\cup \left(x,y\right) = \left(\frac{2\sqrt{63}}{7},\frac{2\sqrt{133}}{7}\right)\)
To solve the given system of equations:
\[
\left\{
\begin{array}{l}
x^{2}+y^{2}=4^{2} \\
\frac{y^{2}}{4}-\frac{x^{2}}{3}=1
\end{array}
\right.
\]
we will follow the hint provided and solve for \( y \) first.
### Step 1: Solve for \( y \)
From the first equation, we can express \( y \) in terms of \( x \):
\[
y^{2} = 16 - x^{2}
\]
Thus, we have two expressions for \( y \):
\[
y = \sqrt{16 - x^{2}} \quad \text{and} \quad y = -\sqrt{16 - x^{2}}
\]
### Step 2: Substitute \( y \) into the second equation
Now, we substitute \( y^{2} \) into the second equation:
\[
\frac{16 - x^{2}}{4} - \frac{x^{2}}{3} = 1
\]
### Step 3: Clear the fractions
To eliminate the fractions, we can multiply through by 12 (the least common multiple of 4 and 3):
\[
12 \left( \frac{16 - x^{2}}{4} \right) - 12 \left( \frac{x^{2}}{3} \right) = 12
\]
This simplifies to:
\[
3(16 - x^{2}) - 4x^{2} = 12
\]
### Step 4: Expand and simplify
Expanding gives:
\[
48 - 3x^{2} - 4x^{2} = 12
\]
Combining like terms results in:
\[
48 - 7x^{2} = 12
\]
### Step 5: Solve for \( x^{2} \)
Rearranging gives:
\[
-7x^{2} = 12 - 48
\]
\[
-7x^{2} = -36
\]
\[
x^{2} = \frac{36}{7}
\]
### Step 6: Solve for \( x \)
Taking the square root gives:
\[
x = \pm \sqrt{\frac{36}{7}} = \pm \frac{6}{\sqrt{7}} = \pm \frac{6\sqrt{7}}{7}
\]
### Step 7: Substitute back to find \( y \)
Now we substitute \( x \) back into the expression for \( y \):
\[
y = \sqrt{16 - x^{2}} = \sqrt{16 - \frac{36}{7}} = \sqrt{\frac{112}{7} - \frac{36}{7}} = \sqrt{\frac{76}{7}} = \frac{\sqrt{76}}{\sqrt{7}} = \frac{2\sqrt{19}}{\sqrt{7}}
\]
Thus, we have two values for \( y \):
\[
y = \frac{2\sqrt{19}}{\sqrt{7}} \quad \text{and} \quad y = -\frac{2\sqrt{19}}{\sqrt{7}}
\]
### Final Solutions
The complete set of solutions for the system is:
\[
(x,y) = \left(-\frac{6\sqrt{7}}{7}, -\frac{2\sqrt{19}}{\sqrt{7}}\right) \cup \left(-\frac{6\sqrt{7}}{7}, \frac{2\sqrt{19}}{\sqrt{7}}\right) \cup \left(\frac{6\sqrt{7}}{7}, -\frac{2\sqrt{19}}{\sqrt{7}}\right) \cup \left(\frac{6\sqrt{7}}{7}, \frac{2\sqrt{19}}{\sqrt{7}}\right)
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución