Responder
The solutions are \( (3, 5) \) and \( (-2, -10) \).
Solución
Solve the equation by following steps:
- step0: Solve for \(y\):
\(2^{y-3x}=\frac{1}{16}\)
- step1: Rewrite in exponential form:
\(2^{y-3x}=2^{-4}\)
- step2: Set the exponents equal:
\(y-3x=-4\)
- step3: Move the expression to the right side:
\(y=-4+3x\)
Solve the system of equations \( x^{2}+x y=24; y=3x-4 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x^{2}+xy=24\\y=3x-4\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(x^{2}+x\left(3x-4\right)=24\)
- step2: Simplify:
\(4x^{2}-4x=24\)
- step3: Move the expression to the left side:
\(4x^{2}-4x-24=0\)
- step4: Factor the expression:
\(4\left(x-3\right)\left(x+2\right)=0\)
- step5: Divide the terms:
\(\left(x-3\right)\left(x+2\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&x-3=0\\&x+2=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=3\\&x=-2\end{align}\)
- step8: Calculate:
\(x=3\cup x=-2\)
- step9: Rearrange the terms:
\(\left\{ \begin{array}{l}x=3\\y=3x-4\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=3x-4\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=3\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=-2\\y=-10\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=-2\\y=-10\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=5\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=-2\\y=-10\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=5\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(-2,-10\right)\cup \left(x,y\right) = \left(3,5\right)\)
Let's solve the given system of equations step by step.
### Step 1: Solve the first equation
The first equation is:
\[
2^{y-3x} = \frac{1}{16}
\]
We can rewrite \(\frac{1}{16}\) as \(2^{-4}\). Thus, we have:
\[
2^{y-3x} = 2^{-4}
\]
Since the bases are the same, we can set the exponents equal to each other:
\[
y - 3x = -4
\]
Rearranging this gives us:
\[
y = 3x - 4
\]
### Step 2: Substitute into the second equation
Now, we substitute \(y = 3x - 4\) into the second equation:
\[
x^2 + xy = 24
\]
Substituting for \(y\):
\[
x^2 + x(3x - 4) = 24
\]
This simplifies to:
\[
x^2 + 3x^2 - 4x = 24
\]
Combining like terms:
\[
4x^2 - 4x - 24 = 0
\]
### Step 3: Simplify the equation
Dividing the entire equation by 4 gives:
\[
x^2 - x - 6 = 0
\]
### Step 4: Factor the quadratic equation
Now we can factor this equation:
\[
(x - 3)(x + 2) = 0
\]
Setting each factor to zero gives us:
\[
x - 3 = 0 \quad \Rightarrow \quad x = 3
\]
\[
x + 2 = 0 \quad \Rightarrow \quad x = -2
\]
### Step 5: Find corresponding \(y\) values
Now we can find the corresponding \(y\) values for each \(x\):
1. For \(x = 3\):
\[
y = 3(3) - 4 = 9 - 4 = 5
\]
2. For \(x = -2\):
\[
y = 3(-2) - 4 = -6 - 4 = -10
\]
### Final Solutions
The solutions to the system of equations are:
\[
(x, y) = (3, 5) \quad \text{and} \quad (x, y) = (-2, -10)
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución