Pregunta
upstudy study bank question image url

QUESTION 1 1.1 By completing the table below, draw the graphs of the following evven functions on the same set of axes provided where \( x \in\left[0^{\circ} ; 360^{\circ}\right] \). Label your graphe clearly by shownite the turning points, \( x \)-intercepts and the \( y \)-intereepts. The graphs of a stowld be axes b) \( f(x)=\cos (x) \) and \( g(x)=3 \cos (x) \) and \( h(x)=\cos (3 x) \). \begin{tabular}{|c|c|c|} \hline\( x^{\circ} \) & \( 0^{\circ} \) \\ \hline \( \sin (x) \) \\ \hline \end{tabular}

Ask by Hamilton Huff. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the functions \( f(x) = \cos(x) \), \( g(x) = 3 \cos(x) \), and \( h(x) = \cos(3x) \) over \( x \in [0^{\circ}, 360^{\circ}] \), follow these steps: 1. **Calculate Key Points**: - For \( f(x) \): - \( 0^{\circ} \): 1 - \( 90^{\circ} \): 0 - \( 180^{\circ} \): -1 - \( 270^{\circ} \): 0 - \( 360^{\circ} \): 1 - For \( g(x) \): - \( 0^{\circ} \): 3 - \( 90^{\circ} \): 0 - \( 180^{\circ} \): -3 - \( 270^{\circ} \): 0 - \( 360^{\circ} \): 3 - For \( h(x) \): - \( 0^{\circ} \): 1 - \( 90^{\circ} \): 0 - \( 180^{\circ} \): -1 - \( 270^{\circ} \): 0 - \( 360^{\circ} \): 1 2. **Plot the Graphs**: - Draw the x-axis from \( 0^{\circ} \) to \( 360^{\circ} \). - Draw the y-axis to accommodate values up to 3 for \( g(x) \). - Plot the points for each function and connect them smoothly. - Label each graph with its function name. - Mark turning points at \( (0,1) \), \( (180,-1) \), and \( (360,1) \) for \( f(x) \) and \( h(x) \), and at \( (0,3) \), \( (180,-3) \), and \( (360,3) \) for \( g(x) \). - Mark \( x \)-intercepts at \( (90,0) \) and \( (270,0) \) for all functions. - Mark \( y \)-intercept at \( (0,1) \) for \( f(x) \) and \( h(x) \), and at \( (0,3) \) for \( g(x) \). By following these steps, you can accurately graph the given functions and identify their key features.

Solución

It seems that I am unable to plot the graphs directly. However, I can guide you on how to plot the functions using graphing software or a graphing calculator. ### Instructions for Plotting 1. **Set Up the Axes**: - Create a Cartesian coordinate system with the x-axis ranging from \( 0^{\circ} \) to \( 360^{\circ} \). - The y-axis should be set to accommodate the values of \( f(x) \), \( g(x) \), and \( h(x) \). For \( g(x) \), the range should be from \( -3 \) to \( 3 \). 2. **Plotting the Functions**: - **For \( f(x) = \cos(x) \)**: - Plot the points: \( (0, 1) \), \( (90, 0) \), \( (180, -1) \), \( (270, 0) \), \( (360, 1) \). - Connect these points smoothly to form the cosine wave. - **For \( g(x) = 3 \cos(x) \)**: - Plot the points: \( (0, 3) \), \( (90, 0) \), \( (180, -3) \), \( (270, 0) \), \( (360, 3) \). - Connect these points smoothly to form the scaled cosine wave. - **For \( h(x) = \cos(3x) \)**: - Plot the points: \( (0, 1) \), \( (90, 0) \), \( (180, -1) \), \( (270, 0) \), \( (360, 1) \). - This function will oscillate more frequently, so ensure to connect the points smoothly. 3. **Labeling**: - Clearly label each graph with its corresponding function name. - Mark the turning points, \( x \)-intercepts, and \( y \)-intercepts on the graph. ### Summary of Key Points - **Turning Points**: - \( f(x) \) and \( h(x) \) have turning points at \( (0, 1) \), \( (180, -1) \), and \( (360, 1) \). - \( g(x) \) has turning points at \( (0, 3) \), \( (180, -3) \), and \( (360, 3) \). - **\( x \)-intercepts**: - All functions have \( x \)-intercepts at \( (90, 0) \) and \( (270, 0) \). - **\( y \)-intercepts**: - \( f(x) \) and \( h(x) \) have \( y \)-intercept at \( (0, 1) \). - \( g(x) \) has \( y \)-intercept at \( (0, 3) \). By following these instructions, you should be able to create a clear and informative graph of the functions \( f(x) \), \( g(x) \), and \( h(x) \). If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To properly approach functions like \( f(x) = \cos(x) \), \( g(x) = 3\cos(x) \), and \( h(x) = \cos(3x) \), one can visualize their behavior across \( [0^\circ, 360^\circ] \). For instance, \( f(x) \) oscillates between -1 and 1, while \( g(x) \) scales this oscillation to -3 and 3, meaning it stretches vertically. In contrast, \( h(x) \) has a frequency three times greater than \( f(x) \), completing three full cycles in the same interval. To draw the graphs accurately, make sure to mark your axes and encapsulate all important features. Note the turning points: for \( f(x) \) and \( g(x) \), they occur at multiples of \( 90^\circ \). The \( y \)-intercepts for these functions can be found by evaluating them at \( x = 0^\circ \) which gives \( f(0) = 1 \) and \( g(0) = 3 \). For \( h(x) \), the \( y \)-intercept is also 1. Don’t forget to highlight the \( x \)-intercepts too! For a fun twist, while plotting, you could visualize the three functions as waves of different heights and frequencies. Imagine f(x) as your steady beach wave, g(x) as a massive swell perfect for surfing, and h(x) as a fast-paced ripple that would make for quick splashes!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad