Factorise fully D \( 27 x^{3}-1 \) 2) \( 8 x^{3}+1 \) 3 \( x^{2}-5 x+6 \) A \( x^{2}-6 x-6 x-y^{2}+3 y \) 5) \( 2 a^{2}-a-15 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
The expression \( 27x^3 - 1 \) can be factored using the difference of cubes formula. It factors to \( (3x - 1)(9x^2 + 3x + 1) \). Similarly, \( 8x^3 + 1 \) factors as a sum of cubes: \( (2x + 1)(4x^2 - 2x + 1) \). Next, the quadratic \( x^2 - 5x + 6 \) can be factored into \( (x - 2)(x - 3) \) since the roots are 2 and 3. The expression \( x^2 - 6x - 6x - y^2 + 3y \) simplifies to \( x^2 - 12x - y^2 + 3y \), allowing for factoring that emphasizes grouping. Lastly, the quadratic \( 2a^2 - a - 15 \) can be factored into \( (2a + 5)(a - 3) \) after applying the AC method. So the fully factored forms are: 1. \( 27x^3 - 1 = (3x - 1)(9x^2 + 3x + 1) \) 2. \( 8x^3 + 1 = (2x + 1)(4x^2 - 2x + 1) \) 3. \( x^2 - 5x + 6 = (x - 2)(x - 3) \) 4. \( x^2 - 12x - y^2 + 3y = (x - 6 - y)(x - 6 + y) \) 5. \( 2a^2 - a - 15 = (2a + 5)(a - 3) \)
