Do not round any intermediate computations. \[ \begin{array}{c}\left(\frac{2}{7}\right)^{1.4}=\square \\ 0.3^{-0.35}=\square\end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
First, let's calculate \(\left(\frac{2}{7}\right)^{1.4}\). Using the property of exponents, we find: \[ \left(\frac{2}{7}\right)^{1.4} = \left(\frac{2}{7}\right)^{\frac{14}{10}} = \left(\frac{2}{7}\right)^{14} \cdot \left(\frac{2}{7}\right)^{-10} \] Calculating the power with a calculator gives approximately: \[ \left(\frac{2}{7}\right)^{1.4} \approx 0.2198 \] Now, let's calculate \(0.3^{-0.35}\). Using the property of negative exponents: \[ 0.3^{-0.35} = \frac{1}{0.3^{0.35}} \] We calculate \(0.3^{0.35}\) which gives us approximately: \[ 0.3^{0.35} \approx 0.7598 \] Thus, we have: \[ 0.3^{-0.35} \approx \frac{1}{0.7598} \approx 1.3169 \] Final results: \(\left(\frac{2}{7}\right)^{1.4} \approx 0.2198\) and \(0.3^{-0.35} \approx 1.3169\).
