Responder
a) \( x^{6} + x^{3} \)
b) \( 24x^{5} \)
c) \( 8a^{3} \)
d) \( 10y^{4} + 2y^{3} \)
e) \( 9b^{6} \)
f) \( 16x^{4}y^{6} \)
g) \( 200x \)
h) \( 32x^{5}y^{11} \)
i) \( x^{2}y^{4} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(10y^{4}+2y^{3}\)
Calculate or simplify the expression \( (x*y^2)*(x*y^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(xy^{2}xy^{2}\)
- step1: Multiply the terms:
\(x^{2}y^{2}\times y^{2}\)
- step2: Multiply the terms:
\(x^{2}y^{4}\)
Calculate or simplify the expression \( 3*x^3*4*x^2*2 \).
Simplify the expression by following steps:
- step0: Solution:
\(3x^{3}\times 4x^{2}\times 2\)
- step1: Multiply the terms:
\(24x^{3}\times x^{2}\)
- step2: Multiply the terms:
\(24x^{3+2}\)
- step3: Add the numbers:
\(24x^{5}\)
Calculate or simplify the expression \( (x^2)^3 + x^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(x^{2}\right)^{3}+x^{3}\)
- step1: Multiply the exponents:
\(x^{2\times 3}+x^{3}\)
- step2: Multiply the numbers:
\(x^{6}+x^{3}\)
Calculate or simplify the expression \( (4*x^2*y^3)^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(4x^{2}y^{3}\right)^{2}\)
- step1: Use the properties of exponents:
\(4^{2}\left(x^{2}\right)^{2}\left(y^{3}\right)^{2}\)
- step2: Evaluate the power:
\(16x^{4}y^{6}\)
Calculate or simplify the expression \( (3*b^3)^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(3b^{3}\right)^{2}\)
- step1: Use the properties of exponents:
\(3^{2}\left(b^{3}\right)^{2}\)
- step2: Evaluate the power:
\(9b^{6}\)
Calculate or simplify the expression \( (5*x^2)^2*(2*x^(-1))^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(5x^{2}\right)^{2}\left(2x^{-1}\right)^{3}\)
- step1: Reduce the numbers:
\(25x\times 8\)
- step2: Multiply the numbers:
\(200x\)
Calculate or simplify the expression \( (4*x^2*y^2)*(2*x*y^3)^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(4x^{2}y^{2}\left(2xy^{3}\right)^{3}\)
- step1: Rewrite the expression:
\(4x^{2}y^{2}\times 8x^{3}y^{9}\)
- step2: Multiply the numbers:
\(32x^{2}y^{2}x^{3}y^{9}\)
- step3: Multiply the terms:
\(32x^{5}y^{2}\times y^{9}\)
- step4: Multiply the terms:
\(32x^{5}y^{11}\)
Calculate or simplify the expression \( 4*a^2*2*a \).
Simplify the expression by following steps:
- step0: Solution:
\(4a^{2}\times 2a\)
- step1: Multiply the terms:
\(8a^{2}\times a\)
- step2: Multiply the terms:
\(8a^{2+1}\)
- step3: Add the numbers:
\(8a^{3}\)
Here are the simplified results for each expression:
a) \( (x^2)^3 + x^3 \)
- Simplification:
\[
(x^2)^3 = x^{6} \quad \text{so,} \quad x^{6} + x^{3}
\]
Result: \( x^{6} + x^{3} \)
b) \( 3x^3 \times 4x^2 \times 2 \)
- Simplification:
\[
3 \times 4 \times 2 = 24 \quad \text{and} \quad x^3 \times x^2 = x^{5}
\]
Result: \( 24x^{5} \)
c) \( 4a^2 \times 2a \)
- Simplification:
\[
4 \times 2 = 8 \quad \text{and} \quad a^2 \times a = a^{3}
\]
Result: \( 8a^{3} \)
d) \( 10y^4 + 2y^3 \)
- This expression is already simplified.
Result: \( 10y^{4} + 2y^{3} \)
e) \( (3b^3)^2 \)
- Simplification:
\[
(3b^3)^2 = 3^2 \times (b^3)^2 = 9b^{6}
\]
Result: \( 9b^{6} \)
f) \( (4x^2y^3)^2 \)
- Simplification:
\[
(4^2)(x^2)^2(y^3)^2 = 16x^{4}y^{6}
\]
Result: \( 16x^{4}y^{6} \)
g) \( (5x^2)^2 \times (2x^{-1})^3 \)
- Simplification:
\[
(5^2)(x^2)^2 \times (2^3)(x^{-3}) = 25x^{4} \times 8x^{-3} = 200x^{1} = 200x
\]
Result: \( 200x \)
h) \( (4x^2y^2) \times (2xy^3)^3 \)
- Simplification:
\[
(2^3)(x^1)^3(y^3)^3 = 8x^{3}y^{9} \quad \text{and} \quad 4x^2y^2 \times 8x^{3}y^{9} = 32x^{5}y^{11}
\]
Result: \( 32x^{5}y^{11} \)
i) \( (x y^{2}) \times (x y^{2}) \)
- Simplification:
\[
(x^1)(x^1)(y^2)(y^2) = x^{2}y^{4}
\]
Result: \( x^{2}y^{4} \)
In summary, the simplified results are:
- a) \( x^{6} + x^{3} \)
- b) \( 24x^{5} \)
- c) \( 8a^{3} \)
- d) \( 10y^{4} + 2y^{3} \)
- e) \( 9b^{6} \)
- f) \( 16x^{4}y^{6} \)
- g) \( 200x \)
- h) \( 32x^{5}y^{11} \)
- i) \( x^{2}y^{4} \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución