Pregunta
upstudy study bank question image url

5. Simplify. \( \begin{array}{lll}\text { a) }\left(x^{2}\right)^{3}+x^{3} & \text { b) } 3 x^{3} \times 4 x^{2} \times 2 & \text { c) } 4 a^{2} \times 2 a \\ \text { d) } 10 y^{4}+2 y^{3} & \text { a) }\left(3 b^{3}\right)^{2} & \text { f) }\left(4 x^{2} y^{3}\right)^{2} \\ \text { g) }\left(5 x^{2}\right)^{2} \times\left(2 x^{-}\right)^{3} & \text { h) }\left(4 x^{2} y^{2}\right) \times\left(2 x y^{3}\right)^{3} & \text { i) }\left(x y^{2} \times( \right.\end{array} \)

Ask by Burton Delgado. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) \( x^{6} + x^{3} \) b) \( 24x^{5} \) c) \( 8a^{3} \) d) \( 10y^{4} + 2y^{3} \) e) \( 9b^{6} \) f) \( 16x^{4}y^{6} \) g) \( 200x \) h) \( 32x^{5}y^{11} \) i) \( x^{2}y^{4} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(10y^{4}+2y^{3}\) Calculate or simplify the expression \( (x*y^2)*(x*y^2) \). Simplify the expression by following steps: - step0: Solution: \(xy^{2}xy^{2}\) - step1: Multiply the terms: \(x^{2}y^{2}\times y^{2}\) - step2: Multiply the terms: \(x^{2}y^{4}\) Calculate or simplify the expression \( 3*x^3*4*x^2*2 \). Simplify the expression by following steps: - step0: Solution: \(3x^{3}\times 4x^{2}\times 2\) - step1: Multiply the terms: \(24x^{3}\times x^{2}\) - step2: Multiply the terms: \(24x^{3+2}\) - step3: Add the numbers: \(24x^{5}\) Calculate or simplify the expression \( (x^2)^3 + x^3 \). Simplify the expression by following steps: - step0: Solution: \(\left(x^{2}\right)^{3}+x^{3}\) - step1: Multiply the exponents: \(x^{2\times 3}+x^{3}\) - step2: Multiply the numbers: \(x^{6}+x^{3}\) Calculate or simplify the expression \( (4*x^2*y^3)^2 \). Simplify the expression by following steps: - step0: Solution: \(\left(4x^{2}y^{3}\right)^{2}\) - step1: Use the properties of exponents: \(4^{2}\left(x^{2}\right)^{2}\left(y^{3}\right)^{2}\) - step2: Evaluate the power: \(16x^{4}y^{6}\) Calculate or simplify the expression \( (3*b^3)^2 \). Simplify the expression by following steps: - step0: Solution: \(\left(3b^{3}\right)^{2}\) - step1: Use the properties of exponents: \(3^{2}\left(b^{3}\right)^{2}\) - step2: Evaluate the power: \(9b^{6}\) Calculate or simplify the expression \( (5*x^2)^2*(2*x^(-1))^3 \). Simplify the expression by following steps: - step0: Solution: \(\left(5x^{2}\right)^{2}\left(2x^{-1}\right)^{3}\) - step1: Reduce the numbers: \(25x\times 8\) - step2: Multiply the numbers: \(200x\) Calculate or simplify the expression \( (4*x^2*y^2)*(2*x*y^3)^3 \). Simplify the expression by following steps: - step0: Solution: \(4x^{2}y^{2}\left(2xy^{3}\right)^{3}\) - step1: Rewrite the expression: \(4x^{2}y^{2}\times 8x^{3}y^{9}\) - step2: Multiply the numbers: \(32x^{2}y^{2}x^{3}y^{9}\) - step3: Multiply the terms: \(32x^{5}y^{2}\times y^{9}\) - step4: Multiply the terms: \(32x^{5}y^{11}\) Calculate or simplify the expression \( 4*a^2*2*a \). Simplify the expression by following steps: - step0: Solution: \(4a^{2}\times 2a\) - step1: Multiply the terms: \(8a^{2}\times a\) - step2: Multiply the terms: \(8a^{2+1}\) - step3: Add the numbers: \(8a^{3}\) Here are the simplified results for each expression: a) \( (x^2)^3 + x^3 \) - Simplification: \[ (x^2)^3 = x^{6} \quad \text{so,} \quad x^{6} + x^{3} \] Result: \( x^{6} + x^{3} \) b) \( 3x^3 \times 4x^2 \times 2 \) - Simplification: \[ 3 \times 4 \times 2 = 24 \quad \text{and} \quad x^3 \times x^2 = x^{5} \] Result: \( 24x^{5} \) c) \( 4a^2 \times 2a \) - Simplification: \[ 4 \times 2 = 8 \quad \text{and} \quad a^2 \times a = a^{3} \] Result: \( 8a^{3} \) d) \( 10y^4 + 2y^3 \) - This expression is already simplified. Result: \( 10y^{4} + 2y^{3} \) e) \( (3b^3)^2 \) - Simplification: \[ (3b^3)^2 = 3^2 \times (b^3)^2 = 9b^{6} \] Result: \( 9b^{6} \) f) \( (4x^2y^3)^2 \) - Simplification: \[ (4^2)(x^2)^2(y^3)^2 = 16x^{4}y^{6} \] Result: \( 16x^{4}y^{6} \) g) \( (5x^2)^2 \times (2x^{-1})^3 \) - Simplification: \[ (5^2)(x^2)^2 \times (2^3)(x^{-3}) = 25x^{4} \times 8x^{-3} = 200x^{1} = 200x \] Result: \( 200x \) h) \( (4x^2y^2) \times (2xy^3)^3 \) - Simplification: \[ (2^3)(x^1)^3(y^3)^3 = 8x^{3}y^{9} \quad \text{and} \quad 4x^2y^2 \times 8x^{3}y^{9} = 32x^{5}y^{11} \] Result: \( 32x^{5}y^{11} \) i) \( (x y^{2}) \times (x y^{2}) \) - Simplification: \[ (x^1)(x^1)(y^2)(y^2) = x^{2}y^{4} \] Result: \( x^{2}y^{4} \) In summary, the simplified results are: - a) \( x^{6} + x^{3} \) - b) \( 24x^{5} \) - c) \( 8a^{3} \) - d) \( 10y^{4} + 2y^{3} \) - e) \( 9b^{6} \) - f) \( 16x^{4}y^{6} \) - g) \( 200x \) - h) \( 32x^{5}y^{11} \) - i) \( x^{2}y^{4} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Sure! Let's simplify each expression step by step with a dash of fun! a) \((x^{2})^{3} + x^{3} = x^{6} + x^{3}\) Let's factor that out: \(x^{3}(x^{3} + 1)\). Boom! Simplified. b) \(3 x^{3} \times 4 x^{2} \times 2 = 24 x^{5}\) Just multiply the coefficients \(3 \times 4 \times 2 = 24\) and add the exponents \(3 + 2 = 5\). Easy peasy! c) \(4 a^{2} \times 2 a = 8 a^{3}\) Multiply \(4\) and \(2\) to get \(8\) and add the exponents of \(a\): \(2 + 1 = 3\). d) \(10 y^{4} + 2 y^{3} = 2y^{3}(5y + 1)\) This one factors nicely! You can take out the common factor of \(2y^{3}\). e) \((3 b^{3})^{2} = 9 b^{6}\) Square the coefficient and multiply the exponent. Easy as pie! f) \((4 x^{2} y^{3})^{2} = 16 x^{4} y^{6}\) Again, square everything: \(4^2 = 16\), while doubling exponents gives \(x^2 \to x^4\) and \(y^3 \to y^6\). g) \((5 x^{2})^{2} \times (2 x^{-1})^{3} = 25 x^{4} \times 8 x^{-3} = 200 x^{1} = 200x\) Multiply like it’s a party! \(5^2 \to 25\) and \(2^3 \to 8\), then add the exponents \(x^{4 -3}\). h) \((4 x^{2} y^{2}) \times (2 x y^{3})^{3} = (4 x^{2} y^{2}) \times (8 x^3 y^9) = 32 x^{5} y^{11}\) Multiply the coefficients and gather your exponents. i) \((x y^{2} \times ( \) Looks like a cliffhanger here! Ensure to follow through to complete the expression. Hope you enjoyed this math journey!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad