Pregunta
upstudy study bank question image url

b) The sum of two numbers is 39 . If the greater number is 5 more than the orget one, find the numbers. The sum of two numbers is 54 . If the smaller number is 6 less than thee geser one, find the numbers.

Ask by Reyes Love. in Nepal
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The numbers are 22 and 17 for the first part, and 30 and 24 for the second part.

Solución

Let's break down the two parts of the problem step by step. ### Part 1: The sum of two numbers is 39 1. **Define the variables:** - Let \( x \) be the greater number. - Let \( y \) be the smaller number. 2. **Set up the equations based on the problem statement:** - From the first condition, we have: \[ x + y = 39 \quad (1) \] - From the second condition, we know that the greater number is 5 more than the smaller number: \[ x = y + 5 \quad (2) \] 3. **Substitute equation (2) into equation (1):** \[ (y + 5) + y = 39 \] Simplifying this gives: \[ 2y + 5 = 39 \] \[ 2y = 39 - 5 \] \[ 2y = 34 \] \[ y = 17 \] 4. **Find \( x \) using equation (2):** \[ x = y + 5 = 17 + 5 = 22 \] So, the two numbers are \( 22 \) (greater) and \( 17 \) (smaller). ### Part 2: The sum of two numbers is 54 1. **Define the variables:** - Let \( a \) be the greater number. - Let \( b \) be the smaller number. 2. **Set up the equations based on the problem statement:** - From the first condition, we have: \[ a + b = 54 \quad (3) \] - From the second condition, we know that the smaller number is 6 less than the greater number: \[ b = a - 6 \quad (4) \] 3. **Substitute equation (4) into equation (3):** \[ a + (a - 6) = 54 \] Simplifying this gives: \[ 2a - 6 = 54 \] \[ 2a = 54 + 6 \] \[ 2a = 60 \] \[ a = 30 \] 4. **Find \( b \) using equation (4):** \[ b = a - 6 = 30 - 6 = 24 \] So, the two numbers are \( 30 \) (greater) and \( 24 \) (smaller). ### Summary of Results: - For the first part, the numbers are \( 22 \) and \( 17 \). - For the second part, the numbers are \( 30 \) and \( 24 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the first problem, let's denote the greater number as \( x \) and the smaller number as \( y \). We know from the problem that \( x + y = 39 \) and \( x = y + 5 \). By substituting \( x \) in the first equation, we get \( (y + 5) + y = 39 \). Solving for \( y \) gives us \( 2y + 5 = 39 \), leading to \( 2y = 34 \), so \( y = 17 \). Substituting back, \( x = 22 \). Thus, the numbers are 22 and 17. For the second problem, let’s again denote the larger number as \( x \) and the smaller as \( y \). The equations we have are \( x + y = 54 \) and \( y = x - 6 \). By substituting \( y \) into the first equation: \( x + (x - 6) = 54 \) gives \( 2x - 6 = 54 \). Solving for \( x \), we have \( 2x = 60 \) which leads to \( x = 30 \). Then substituting back, \( y = 24 \). Thus, the numbers are 30 and 24.

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad