If \( \cos ^{2} 23^{\circ}=t \), determine the following in terms of \( t \) : (1) \( \sin ^{2} 337^{\circ} \) (2) \( \sin 23^{\circ} \) (3) \( \cos 46^{\circ} \) (4) \( \sin 46^{\circ} \) (5) \( \tan \left(-226^{\circ}\right) \) (6) \( \sin 37^{\circ} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To express each of the given trigonometric functions in terms of \( t = \cos^2 23^\circ \), let's compute them step by step. 1. **For \( \sin ^{2} 337^{\circ} \)**: \[ \sin^2 337^\circ = \sin^2 (-23^\circ) = \sin^2 23^\circ = 1 - \cos^2 23^\circ = 1 - t. \] 2. **For \( \sin 23^{\circ} \)**: \[ \sin 23^\circ = \sqrt{1 - \cos^2 23^\circ} = \sqrt{1 - t}. \] 3. **For \( \cos 46^{\circ} \)**: \[ \cos 46^\circ = \cos(2 \times 23^\circ) = 2 \cos^2 23^\circ - 1 = 2t - 1. \] 4. **For \( \sin 46^{\circ} \)**: \[ \sin 46^\circ = \sin(2 \times 23^\circ) = 2 \sin 23^\circ \cos 23^\circ = 2 \sqrt{1 - t} \cdot \sqrt{t} = 2 \sqrt{t(1 - t)}. \] 5. **For \( \tan \left(-226^{\circ}\right) \)**: \[ \tan(-226^\circ) = \tan(134^\circ) = -\tan(46^\circ) = -\frac{\sin 46^\circ}{\cos 46^\circ} = -\frac{2 \sqrt{t(1 - t)}}{2t - 1}. \] 6. **For \( \sin 37^{\circ} \)**: \[ \sin 37^\circ = \sin(90^\circ - 53^\circ) = \cos 53^\circ = \sin 23^\circ = \sqrt{1 - t}. \] Thus, summarizing in terms of \( t \): 1. \( \sin^2 337^\circ = 1 - t \) 2. \( \sin 23^\circ = \sqrt{1 - t} \) 3. \( \cos 46^\circ = 2t - 1 \) 4. \( \sin 46^{\circ} = 2\sqrt{t(1-t)} \) 5. \( \tan(-226^\circ) = -\frac{2\sqrt{t(1-t)}}{2t - 1} \) 6. \( \sin 37^\circ = \sqrt{1 - t} \)
